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Abstract 

This research was focused on two issues related to multilane roundabouts on high-

speed highways (speed limit 45 mph or greater) in rural and suburban areas. The first was the 

tradeoff between converting a traditional stop-controlled or signalized intersection to a 

multilane roundabout while the second was the safety of newly constructed high-speed 

multilane roundabouts in rural and suburban areas. The research team reviewed information 

from diverse published documents and conducted a survey of state and local transportation 

agencies. Crash data on multilane rural roundabouts were not available for this research. 

Therefore, the research team relied on crash and other data for single lane roundabouts that 

were constructed to replace rural two-way stop-controlled intersections in Kansas. To gain 

further insights into the safety of rural multilane roundabouts, the research team focused on 

investigating the safety of urban multilane roundabouts from published sources. 

Results of the survey indicated the need for proper design of roundabouts including 

signage and lighting and the potential for gaining benefits from public informational 

campaigns. Results of the Kansas data analysis of single lane roundabouts showed that 

overall all types of crashes were reduced after conversion of TWSC intersections to modern 

single lane roundabouts. Total crashes decreased by 58.13%; fatal crashes were reduced by 

100% at all locations and non-fatal injury crashes were reduced with an overall reduction rate 

of 76.47%. Property-damage-only crashes were reduced by 35.49% as a whole, but two out 

of the four analyzed sites experienced increases in property-damage-only crashes after 

conversion to roundabouts. The annual value of the reduction in comprehensive crash costs 
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from conversion of a two-way stop-controlled intersection on a rural, high-speed highway to 

a single lane modern roundabout was between $1.0 million and $1.6 million in 2014 dollars. 

A review of multilane roundabout conversions (mostly in urban areas) showed safety 

improvements compared to signalized and two-way stop-controlled intersections. 

Recommendations are presented in the report. 
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Chapter 1 Introduction 

1.1 Objective 

This research focused on investigating two issues related to multilane roundabouts on 

high-speed highways (speed limit 45 mph or greater) in rural and suburban areas. The first 

was the tradeoff between converting a traditional stop controlled or signalized intersection to 

a multilane roundabout on high-speed state highways, and the second was the safety of newly 

constructed high-speed multilane roundabouts in rural and suburban areas. 

Many single lane roundabouts have been constructed in Nebraska with favorable 

safety results, and several multilane roundabouts on high-speed Nebraska state highways are 

planned for construction in the near future. However, there are questions about the safety 

performance of multilane roundabouts constructed on high-speed facilities. The NCHRP 672 

report (Rodegerdts et al. 2010) notes that most multilane roundabouts experience increased 

safety benefits compared to conventional intersections; however some state transportation 

agencies experienced an increase in crashes immediately after converting a conventional 

intersection to a multilane roundabout. In these instances, the subject roundabout was 

followed by negative publicity and public opinion. A recent City of Lincoln experience with 

the newly constructed multilane roundabout at North 14th and Superior streets has also not 

been favorable due to a spate of crashes after completion of construction. Therefore, one of 

the aims in this research is to avoid safety issues that other agencies experienced with newly 

constructed roundabouts in Nebraska and thereby mitigate possible negative publicity and 

public opinion about multilane roundabouts. 
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Overall, this research is aimed at investigating the tradeoffs between traditional 

intersections and roundabouts on high-speed state highways located in rural and suburban 

areas, and exploring safety issues associated with multilane roundabouts on high-speed 

facilities located in rural and suburban areas. The following NDOR projects could potentially 

benefit from this research: Kearney East Bypass, 11th St. to 56th St.; Norfolk intersection of 

US-275 and N-35; and Norfolk intersection of 37th St. and US-275. These projects are 

planned for construction during the 2013-2015 period.                                                                                                         

1.2 Previous Studies 

Constructing roundabouts is considered one way to reduce vehicle collisions and 

improve the efficiency of intersections (Nebraska Department of Roads 2012). This literature 

review focuses on two aspects: the tradeoff of converting a traditional stop or signal 

controlled intersection into a roundabout, and the safety benefits or drawbacks of a 

roundabout. In fact, the two aspects are so closely related that research studying one aspect 

usually digs into the other as well. Research on high-speed multilane roundabouts constructed 

in rural or suburban areas was emphasized, however, research achievements on roundabout 

safety to date showed an obvious concentrate on single-lane roundabouts and urban 

roundabouts. The number of research papers on high-speed suburban or rural multilane 

roundabouts is relatively few.   

This literature review focuses on the safety evaluation of roundabouts and 

benefits/costs of converting conventional intersections into roundabouts. Eight sections are 

included. They are the (1) general evaluation of roundabouts operational performances; (2) 
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benefits and costs of converting conventional intersections into roundabouts; (3) before/after 

safety studies on converting traditional intersections into roundabouts; (4) crash predicting 

models; (5) safety-related research on the high-speed/rural/suburban/multilane roundabouts; 

(6) design issues for rural high-speed multilane roundabouts; (7) safety of pedestrian and 

cyclists at roundabouts; and (8) some other significant safety studies on roundabouts. 

1.2.1 General Evaluation of Roundabouts’ Operational Performances 

Generally, roundabouts increase capacity and reduce delays and crashes. The NCHRP 

Report 672 (Rodegerdts et al. 2010) provides several operational performance evaluation 

methods that may serve as sound comparison bases between roundabouts and stop- or signal-

controlled intersections. Those methods include the HCM method, deterministic software, 

and simulation. Through the evaluations, the report concluded that a roundabout always 

provides a higher capacity and lower delays than an all-way stop control (AWSC) and 

generally produces lower delays than a signalized intersection under the same traffic 

volumes. Roundabouts are unlikely to offer lower overall delays than two-way stop control 

(TWSC) but can offer significant safety benefits over TWSC intersections. For intersections 

with heavy left turns from the major street or an intersection with major street traffic causing 

too much delay over minor street traffic, roundabouts may perform better than a TWSC 

intersection. Compared with a signal control, a roundabout within its capacity usually 

provides better operational performance in terms of stops, delay, vehicle queues, fuel 

consumption, safety, and pollution emissions. Russell et al. (2005) studied the operational 

performance of 11 roundabouts in Kansas and compared them with other conventional 
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controlled intersections. This study concluded that the operational efficiency was 

significantly improved because there were statistically significant reductions in delay, 

queuing, and proportion of vehicles stopped at all the study sites after the installation of a 

modern roundabout. 

1.2.2 Benefits/Costs of Converting Conventional Intersections to Roundabouts 

The benefits-cost method is the most appropriate for evaluating the trade-off of public 

works, such as converting a signal- or stop-controlled intersection into a roundabout. This 

method needs to take into account the costs and benefits of public works. As for roundabouts, 

costs may include construction costs, engineering and design fees, land acquisition, and 

operation and maintenance costs. Benefits may be classified as safety benefits (reduced crash 

rates and severity), operational benefits (reduced delay and stops), and environmental 

benefits (fuel consumption and emissions) (Robinson and Rodegerdts 2000).  

When comparing two alternatives, the basic premise of benefits-cost evaluation is to 

compare the incremental benefit between two alternatives to the incremental costs between 

the same alternatives (Rodegerdts et al. 2010). The equation is: 

 

B/CB→A = (BenefitsB -BenefitsA)/(CostsB -CostsA) 

In which, A and B are two alternatives.  

 

  While assessing one viable project, the benefit-cost ratio is a measure of return, or 

benefit, for each dollar expended. A viable project should have a benefit-cost ratio exceeding 



5 

1: the higher the ratio, the better the investment (Niederhauser, Collins, and Myers 1997). The 

equation is: 

 

𝐵

𝐶
=

𝐸𝑈𝐴𝐵

𝐸𝑈𝐴𝐶
=

𝐸𝑈𝐴𝐵

𝐶𝑅𝐹 ∗ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 + 𝐴𝑛𝑛𝑢𝑎𝑙 𝑂&𝑀 Costs
 

In which, O&M is Operation and Maintenance; EUAC is the equivalent uniform average 

cost, which equals the equivalent annual construction cost plus average O&M costs; EUAB is 

the equivalent uniform average benefits; CRF is capital recovery factor. 

 

1.2.2.1 Benefits 

(1) Safety Benefits 

The safety benefits are the assumed savings to the public due to a reduction in crashes 

within the project area. To determine the safety benefits, the existing safety history in terms 

of crash rates and severity need to be checked. The number of future crash rates (after the 

construction of roundabouts) of each level of severity is to be forecasted. Safety benefits are 

estimated by multiplying the expected number of “after” crashes of each level of severity by 

the average cost of each crash. Table 1.1 shows the economic costs per crash based on 

different severity levels. Crash reductions from converting conventional intersections to 

roundabouts are discussed in section 1.2.3.  
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Table 1.1 Economic cost of crashes 

Crash Severity Economic Cost Per Crash (2008 dollars) 

Fatality $4,200,000 

Class A (incapacitating injury) $214,200 

Class B (non-incapacitating evident injury) $54,700 

Class C (possible injury) $26,000 

Property Damage Only (per crash) $2,400 

Source: National Safety Council (Rodegerdts et al. 2010) 

 

(2) Operational Benefits 

The operational benefits can be quantified in terms of the overall reduction in person-

hours of delay to the public. The calculation of annual person-hours of delay can be 

performed with varying levels of detail, depending on the availability of data (Rodegerdts et 

al. 2010). Roundabouts generally increase capacity and reduce delays and crashes. A 

roundabout always provides a higher capacity and lower delays than an AWSC, which 

generally produces lower delays than a signalized intersection, but is unlikely to offer lower 

overall delays than TWSC, as discussed in section 1.2.1.  

Delay models were developed to estimate delay at roundabouts and compare it to 

delay of other conventional intersections. Queuing theory was used in research to develop the 

estimation model for single lane roundabout approaches (Flannery and Kharofeh 2000). 

Results were compared with field measures. For multilane roundabouts, Seiberlich’s research 

presents a formulation for evaluating the capacity and delay of multilane roundabouts. The 

formulation uses the gap acceptance theory and evaluates entry lanes on a lane-by-lane basis 

(Seiberlich 2001). On the other hand, Signalized and Unsignalized Intersection Design and 



7 

Research Aid (SIDRA), which is able to evaluate all types of intersections including 

roundabouts, is often used to evaluate the performance of roundabouts with other 

intersections (Florida Department of Transportation 1995; Luttrell, Russell, and Rys 2000; 

Chung, Young, and Akcelik 1993). In Luttrell’s research, the roundabout was found to operate 

statistically better than the comparable two-way stop intersections.  

(3) Environmental Benefits 

The environmental benefits are quantified in terms of reduced fuel consumption and 

improved air quality. One way to determine fuel consumption is to use the same procedure 

for estimating delay. The resulting estimate can then be converted to a cost by assuming an 

average cost of fuel, expressed in dollars per gallon (dollars per liter) (Rodegerdts et al. 

2010). 

Since roundabouts generally reduce delays and stops compared to other types of 

intersections, the environmental benefits of converting conventional intersections into 

roundabouts are obvious. Carbon emissions, for instance, can be expected to save $500 

annually when replacing a signalized intersection with a roundabout (Bahar, Smahel, and 

Smiley 2009).  

1.2.2.2 Costs 

(1) Construction Costs 

Construction costs of any intersection alternative should be calculated using normal 

preliminary engineering cost-estimating techniques. The costs include the costs of any 

necessary earthwork, paving, bridges and retaining walls, signing and striping, illumination, 
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and signalization (Rodegerdts et al. 2010). The construction cost depends on several factors 

including the setting, that is, urban or rural, the complexity of the changes to the existing site, 

mostly on the approaches, and maintenance of traffic during construction (Kansas 

Department of Transportation 2003). 

Constructing a roundabout may cost more or less than a traffic signal, depending on 

the amount of new pavement area and the extent of other roadway work required. 

Roundabouts may require more pavement area at the intersection compared to a traffic signal, 

but less on the approaches and exits. Compared to the two-way or all-way stop-controlled 

intersection, in most cases a roundabout is more expensive to construct. According to the 

National Cooperative Highway Research Program (NCHRP) Synthesis 264, the average 

construction cost of 14 U.S. roundabouts at that time was approximately $250,000 (Robinson 

and Rodegerdts 2000). Roundabout construction costs mentioned by previous research or 

publications are summarized in table 1.2. 

 

Table 1.2 Roundabout (RAB) construction costs 

State Reference 
Construction 

Year 

Construction 

Costs ($) 
Method* Note 

Kansas 
(Church 

2007) 
2006 3.2 million R 

TWSC converted to a five-

leg RAB 

Kansas 
(Church 

2007) 
2001 2.5 million R 

TWSC converted to five-leg 

RAB 

Kansas 
(Church 

2007) 
2006 2.4 million R 

Three leg braided 

intersection 

Kansas 
(Alisoglu 

2010) 
Unknown 735,855 E 

Replacement of a 

dilapidated roundabout to a 

new one 

Washington (WSDOT) 2012 5,824,000 F Two RABs 

Washington (WSDOT) 2012 4.9 million F A single-lane RAB 

Washington (WSDOT) 2013 7,763,000 F Two single-lane RAB 

Washington (WSDOT) 2014 4.5 million E TWSC to RAB 

Washington (WSDOT) 2014 4,925,000 F Two RABs 
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Maryland 
(MD-SHA 

2002) 
1999 232,284  R A single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2000 520,613  R TWSC to single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2001 300,000  E Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
UN 300,000  E Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2001 679,569  R Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2000 687,434  R Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1996 464,540  R TWSC to Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1993 200,000  E TWSC to Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1995 472,014  R TWSC to Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1995 493,881  R TWSC to Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2001 300,000  E Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
2001 300,000  E Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1995 386,145  R 

TWSC to single-lane rural 

RAB 

Maryland 
(MD-SHA 

2002) 
1998 500,678  R Single-lane RAB 

Maryland 
(MD-SHA 

2002) 
1999 382,347 R TWSC to Single-lane RAB 

Michigan 
(Biolchini 

2013) 
2013 2.3 million E 

Included is a $470,000 

water main replacement 

project by the city of Ann 

Arbor 

Alabama 
(Anderson 

2013) 
2014 1.4 million E None 

Louisiana 
(Leblanc 

2009) 
Unknown 885,304 E None 

Ohio 
(B & G 

ENG 2012) 
Unknown 321,100  E None 

Ohio 
(B & G 

ENG 2012) 
Unknown 299,900  E None 

Ohio 
(B & G 

ENG 2012) 
Unknown 467,400 E None 

Multi 

States 

NCHRP 

264 

(Jacquemart 

1998) 

N.A. 250,000 E 

Ranges between $10,000 

and $500,000, with an 

average total cost of 

$250,000, including 

construction, maintenance 

of traffic, design, and 

engineering 

California 
NCHRP 

264 
Unknown 400,000 R None 
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(Jacquemart 

1998) 

Colorado 

NCHRP 

264 

(Jacquemart 

1998) 

Unknown 2.8 million R 

This figure includes 

construction of both two 

RABs, the reconstruction of 

the freeway ramp termini 

and other roadways, 

drainage work, landscaping 

($500,000), maintenance of 

traffic, and design and 

engineering costs 

($375,000). 

Note: *Costs were given based Real Cost (R), Funding (F) or Estimate (E) 

 

On the other hand, the cost of maintaining traffic during construction tends to be 

relatively high when converting conventional intersections into roundabouts. The expense is 

due mainly to maintaining existing traffic flow through the intersection while rebuilding it in 

stages (Robinson and Rodegerdts 2000). 

(2) Operation and Maintenance (O&M) Costs 

Roundabouts usually have slightly higher illumination power and maintenance costs 

compared to signalized or sign-controlled intersections due to a larger number of illumination 

poles. Roundabouts have slightly higher signing and pavement marking maintenance costs 

due to a higher number of signs and pavement markings (Rodegerdts et al. 2010). 

Roundabouts can also have higher landscape maintenance costs, depending on the degree of 

landscaping provided on the central island, splitter islands, and perimeter (Robinson and 

Rodegerdts 2000). 

Compared to signalized intersections, however, roundabouts do not have signal 

equipment that requires constant power, periodic light bulb and detection maintenance, and 

regular signal timing updates. Also, roundabouts do not need to worry about power failures 
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during daytime. The service life of a roundabout is significantly longer, approximately 25 

years, compared to 10 years for a typical signal (Robinson and Rodegerdts 2000). For 

signalized intersections, the annual power cost is around $3,000. Signal timing maintenance 

requires a specialized workforce and equipment. Traffic signals are often added to an 

agency’s responsibility without a commensurate increase in budget. Signal retiming costs 

approximately $2,500 to $3,100 per signal and needs to be repeated every 8-9 years 

(Rodegerdts et al. 2010).  

In general, O&M costs for roundabouts are higher than for other un-signalized 

intersections, but less than those for signalized intersections (Robinson and Rodegerdts 

2000). Especially in the long-term, operational costs of roundabouts are reduced. 

Proost and DeGeest (2006) examined a wide range of benefits from changing a 

crossing with traffic lights into a roundabout. They conclude that roundabouts are cost 

effective, and that a sensitivity analysis indicated the results were very robust for changes in 

accident, time, and infrastructure costs. A cost-benefit analysis was also used in this study. 

1.2.3 Before-After Safety Studies of Converting Traditional Intersections to Roundabouts 

1.2.3.1 International Experience 

Thirty-eight roundabouts in Greater London, England, were studied during a nineteen-

month before-after period (Lanani 1975), most of which were mini and small roundabouts 

located in built-up areas. The results showed a 39% reduction in vehicle accidents.  

A more comprehensive safety research on eighty-four roundabouts in the United 

Kingdom (Maycock and Hall 1984) once acted as the basis of designing and constructing 
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roundabouts in many countries. It developed the U.K. roundabout capacity model and the 

collision prediction model, which relates injury crashes to several geometric design 

parameters. All the roundabouts in the research were conventional (usually single-lane) or 

small-island roundabouts located in 30-40 mile/h and 50-70 mile/h speed limit zones.  

Tudge studied 230 roundabouts and 60 controlled intersections in New South Wales, 

Australia, and the results showed a 50% overall reduction in accidents at roundabouts with a 

63% reduction in fatal accidents, a 45% reduction in injury accidents, and a 40% reduction in 

damage-only accidents (Tudge 1990). Stuwe conducted a comparative study between 

roundabouts and other controlled intersections in Germany (Stuwe 1991). The results 

indicated that the total number of accidents at roundabouts seemed to be higher than at 

intersections, but the severity of these accidents was lower.  

Another study was conducted in Victoria, Australia on seventy-three roundabouts 

(AUSTROADS 1993). A 74% reduction in the casualty accident rate was found after the 

installation of roundabouts. A 68% reduction was observed in pedestrian casualty accidents, 

even it was not so significant in the 90% confidence level.  

A two-year before/after study conducted near Sydney, Australia (Adams 1995) 

assessed the crash frequency and severity after the installation of eleven traffic signals and 

thirteen roundabouts. Results showed a greater reduction in crash frequencies at the 

roundabouts than at the signal intersections (71% versus 35%).  

A before and after comparison of 122 roundabout intersections in Belgium (Antoine 

2005) indicated an average 42% decrease in injury crashes and 48% decrease in serious 
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accidents. The reduction varied by environment: in urban, suburban, and open rural areas, the 

reductions rates were 15%, 46% and 50% respectively.  

A summary of the above international experience is presented in table 1.3. 

 

Table 1.3 International experience in before-after safety analysis 

Country, City 

& Year 
Roundabouts Studied Findings 

Greater London, 

UK, 1975 

38 roundabouts, most 

are mini and small 

roundabouts 

A 39% reduction in vehicle accidents 

New South 

Wales, 

Australia, 1990 

230 roundabouts and 

60 controlled 

intersections  

A 50% overall reduction in accidents at roundabouts 

with a 63% reduction in fatal accidents, a 45% 

reduction in injury accidents and a 40% reduction in 

damage-only accidents  

Victoria, 

Australia, 1993  

73 roundabouts  A 74% reduction in the casualty accident rate and a 

68% reduction in pedestrian casualty accidents  

Sydney, 

Australia, 1995  

11 traffic signals and 

13 roundabouts 

A 71% reduction in crash frequencies at the 

roundabouts and a 35% at the signal intersections 

Germany, 1991 2 single-lane and 8 

multilane roundabouts 

The total number of accidents at roundabouts seemed 

to be higher than at intersections, but the severity of 

these accidents was lower 

Belgium, 2005 122 roundabouts An average of 42% decrease in injury crashes and 

48% decrease in serious accidents. The reduction 

varied by environment, in urban, suburban and open 

rural areas, the reductions rates were 15%, 46% and 

50% respectively.  

 

1.2.3.2 U.S. Experience 

Thirteen roundabouts located in California, Florida, Maryland, and Nevada were 

analyzed in Flannery and Datta’s research (Flannery and Datta 1996). Their before/after 

analysis was conducted through the crash data associated with six of the locations to 

determine if roundabouts are an effective alternative to stop and signalized intersections. The 

before/after time period was set at two years. Results showed that the reduction in the mean 
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of crashes in the before and after periods was significant at a 99% level of confidence. 

Taekratok compared the advantages and disadvantages of roundabouts, summarized 

safety implications, and discussed pedestrian and bicyclist considerations in the report for 

Oregon Department of Transportation (Taekratok 1998). Research before that time was 

reviewed.  

A before-after study was completed by Insurance Institute for Highway Safety (IIHS) 

in places where traditional intersections including urban/rural single-lane stop controlled, 

urban multilane stop controlled, and urban signalized intersections were converted to 

roundabouts (Persaud et al. 2000). A highly significant 39% reduction for all crash severities 

combined for the twenty-four converted intersections was found. Reduction in injury 

collisions was 76% and reduction in fatal and incapacitating collisions was about 90%. Those 

figures are “consistent with numerous international studies” and considered as collision 

modification factors (CMF’s) for some crash prediction models.  

An Empirical Bayes observational before-after study on crashes was conducted in the 

United States following the conversion of twenty-three intersections from stop sign and 

traffic signal control to modern roundabouts (Persaud et al. 2001). The twenty-three 

intersections included both single-lane and multilane designs in the urban sample. The rural 

sample consisted of only single-lane designs. The results indicated a significant 40% 

reduction in all crashes and an 80% reduction in injury crashes. The five rural single-lane 

roundabouts experienced a 58% reduction in total crashes and an 82% reduction in injury 

crashes.  
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Maryland also conducted both a before/after study and a benefit/cost analysis for 

fifteen single-lane roundabouts (Maryland State Highway Administration 2002). The average 

annual crashes and crash severity were both found to decrease in the before-after study. The 

benefit/cost analysis indicated that for every dollar spent on these projects, there is a return of 

approximately eight dollars to be realized through crash reduction. Eight two-lane 

roundabouts were also studied. Only four of them have before records, and the comparison of 

the number of accidents and injuries before and after the installation of roundabouts found no 

particular trend.  

The NCHRP Report 572, Roundabouts in the United States (Rodegerdts 2007), 

reported a before/after study that compared the performance of traditionally controlled 

intersections with roundabouts. It concluded that roundabouts improved both overall crash 

rates and injury crash rates in a wide range of settings (urban, suburban, and rural) and over 

previous forms of traffic control. Reductions were found when a stop or signal-controlled 

intersection was converted into a roundabout. All types of crashes were reduced by 

approximately 35.4% and injury crashes were reduced by 75.8%. The conversions from all-

way stop control (AWSC) intersections were exceptions because the crash experience 

remained statistically unchanged. The research pointed out that single-lane roundabouts 

offered greater safety benefits than multilane roundabouts due to fewer points of conflict, and 

the safety performance of a multilane roundabout seemed sensitive to design details.  

The NCHRP Report 672 (Rodegerdts et al. 2010) is still a main text on the safety 

evaluation of roundabout conversions. The before-after studies conducted by many 
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researchers show similar results: roundabouts greatly reduce the number and the severity of 

crashes at intersections. Although specific values regarding crash reductions may be different 

because of variations in the way collisions are reported between different countries/places, 

the prevailing trends are quite obvious.  

 

Table 1.4 U.S. experience in before-after safety analysis 

City/Agency & 

Year 
Roundabouts Studied Findings 

California, 

Florida, Maryland, 

and Nevada, 1998  

6 single-lane urban roundabouts 

with speed lower than 45 mph 

that were converted from stop or 

signal controls 

Significant reduction in crashes  

Insurance Institute 

for Highway 

Safety (IIHS), 

2000 

24 single/ multilane rural/urban 

roundabouts that were converted 

from traditional controls  

A highly significant 39% reduction for 

all crash severities. Reduction in injury 

collisions was 76% and reduction in fatal 

and incapacitating collisions was about 

90%.  

Multiple US 

cities, 2001  

Conversion of 23 intersections 

from stop sign and traffic signal 

control to modern roundabouts, 

including both single-lane and 

multilane designs in the urban 

sample and only single-lane 

designs in the rural sample 

A significant 40% reduction in all 

crashes and an 80% reduction in injury 

crashes. Of them, the five rural single-

lane roundabouts experienced a 58% 

reduction in total crashes and an 82% 

reduction in injury crashes. 

Maryland, 2002 15 single-lane roundabouts The benefit/cost analysis indicated that 

for every dollar spent on these projects 

there is a return of approximately eight 

dollars to be realized through crash 

reduction. 

Two-lane roundabouts in this study 

showed no certain trend in crash 

reduction rates. 

Multiple US cities 

(NCHRP Report 

572 & 672), 2007 

55 roundabouts of all situations All types of crashes are reduced 

approximately by 35.4% and injury 

crashes are reduced by 75.8%.  

 

 

1.2.4 Crash Predicting Models 

Besides a before/after study, another way to evaluate roundabouts’ safety is to use 
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crash predicting models. Two crash predicting models proposed by the NCHRP Report 572 

and further discussed by the NCHRP Report 672 are the intersection-level crash prediction 

model and the approach-level crash prediction model. Prediction models are preferred over 

before/after studies in Report 572 because a comprehensive set of crash modification factors 

required by the latter is not always available.  

According to Angelastro’s review (2011), the majority of the research involving crash 

prediction at roundabouts has been conducted in Europe, Australia, and Sweden. Limited 

research on this aspect has been conducted in the United States. The majority of the research 

regarding American roundabouts consists of before and after crash analyses that establish the 

effectiveness of roundabouts in reducing crashes (Angelastro 2011). Angelastro studied the 

relationship between available driver sight distance and driver speeds and crash rates. The 

data contained twenty-six single-lane roundabouts in the United States. Vehicle speeds and 

crash rates were found to be related to driver sight distance through regression models. 

Additionally, the author developed a crash prediction model at roundabouts based on 

American roundabouts.  

Chapter five of the FHWA’s Roundabouts Informational Guide (Robinson and 

Rodegerdts 2000) also describes several roundabout safety models that may be applied to the 

United States, including the Maycock and Hall model developed based on data from UK 

roundabouts (Maycock and Hall 1984); FHWA’s four leg roundabout crash prediction models 

for America; Arndt’s model for Australia (Arndt and Troutbeck 1998); Brude and Larsson’s 

Swedish model (Brude 2000); and Guichet’s French model. These models can be used to 
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predict the general number of accidents at roundabouts (Guichet 1997).   

Arndt’s collision prediction model (Arndt and Troutbeck 1998) uses non-linear 

regression equations based on driver behaviors and other significant predictors of crashes to 

model different types of crashes, including single-vehicle, approach, entry-circulating, exit-

circulating, sideswipe, and other. Driver behaviors in this research were reflected by the 85th 

percentile speeds on each geometric element and the location of vehicle paths through the 

roundabout. 

Apart from the direct prediction models, collisions can also be predicted on the basis 

of collision modification factors (CMF’s) using the results of before/after studies of 

intersections converted to roundabouts (Weber 2007). Al-ghirbal developed a prediction 

model in the master thesis for severe accidents at roundabouts by utilizing the Artificial 

Neural Network technique (an artificial intelligence approach) to relate the available 

geometric traffic characteristics with the accident records (Al-Ghirbal 2005).  

1.2.5 Safety-Related Research on the High-Speed/Rural/Suburban/Multilane Roundabouts  

1.2.5.1 High-Speed/Rural/Suburban  

(1) International Experience 

A comprehensive study of 12,000 roundabouts throughout France was conducted in 

1997 (Guichet 1997). There were very few accidents that occurred within the one year study 

period, totaling 1,339 accidents. Comparisons were made between the safety performance of 

rural traditional controlled intersections and roundabouts. Roundabouts were reported to have 

an averaged 38 fatal or serious injuries out of every 100 accidents, and traditional 
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intersections had an average of 55 out of 100. Roundabouts were also found to be safer in 

urban areas than in rural areas.   

Inadequate signing (location, appropriateness, size, and quantity), which may be 

relevant to rural environments, has been reported as the reason for high approaching speed 

and driver confusion at roundabouts in a review of fifty safety audit reports of roundabouts in 

New Zealand (Traffic Design Group of Lower Hutt 2000).  

Another New Zealand research project investigated the design and operational 

guidelines required for the safe application of roundabouts in rural environments (Thomas 

and Nicholson 2003). Design issues including design speed, sight distance, roundabout 

layout, etc., were discussed. They indicated that a rural environment may induce a lower level 

of alertness, so rural roundabouts require supplementary measures on the approach to warn 

drivers so they can negotiate it safely.  

Further research in New Zealand (Turner and Roozenburg 2006) revealed that 

roundabouts with approaching speeds higher than 44 mph had 35% more injury crashes than 

those with lower speeds. It is unclear if these roundabouts with high-speed approaches 

represented both rural and urban environments and both single-lane and multilane 

roundabouts.  

A study on conversion to roundabouts in Belgium (Antoine 2005) showed an average 

42% decrease in injury crashes and 48% decrease in serious crashes in all settings. 

Roundabouts in rural open country environments, which usually have high speed approaches, 

had a 50% crash reduction. Roundabouts in suburban locations had a crash reduction of 46% 
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and those in urban areas a reduction of 15%. 

Steel et al. (Steel et al. 2007) addressed the suitability of installing roundabouts in 

Alberta’s rural areas with respect to improving the overall safety performance. 

 (2) U.S. Experience 

Flannery and Elefteriadou (Flannery and Elefteriadou 1999) addressed the safety 

performance of single roundabouts in the United States. They found that the overwhelming 

majority of the crashes that occurred at high speed rural roundabouts were caused by 

inadequate speed reduction alignment on the inbound approaches. About 45% of the single 

vehicle crashes at the studied roundabouts were “loss of control” crashes. It appeared that the 

vehicles were traveling at excessive speeds when approaching the roundabout. 

Myers (1999) studied crashes at five rural roundabouts with high-speed approaches in 

Maryland by analyzing data gathered three years before and three years after the installation 

of the roundabouts. A before-after analysis showed that the average crash rate at these five 

intersections reduced by 59% and injury or serious crashes were reduced by 80%. 

As mentioned earlier, Persaud et al. (2001) conducted an EB observational before-

after study on crashes when twenty-three intersections were converted from stop sign and 

traffic signal control to modern roundabouts. Results indicated a 40% reduction in all crashes 

and an 80% reduction in injury crashes. Of all the intersections, the five rural single-lane 

roundabouts experienced a 58% reduction in total crashes and an 82% reduction in injury 

crashes, which were both higher than the average of all settings. 

The New York State Department of Transportation (NYSDOT) expanded the IIHS 
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study to 33 roundabouts in 2003 by conducting surveys among 50 state DOTs as well as 

many local municipalities and consultants (Robinson et al. 2004). A before/after safety model 

was also built. The results showed the total collisions of all types were reduced by 47%, and 

injury collisions were reduced by 72% (Jacquemart 2004). The study also showed that 

multilane roundabouts are more prone to property damage only (PDO) collisions. However, 

multilane roundabouts were not shown to be more prone to injury collisions.  

As speed may be crucial to rural roundabout safety, eleven single-lane roundabouts in 

potentially high-speed environments were selected from several U.S. states to study the 

relationship between roundabout geometric design elements and driving speeds (Johnson and 

Flannery 2005).  

Richie and Lenters (2005) compared the performance of roundabouts and traffic 

signals with high-speed approaches (45+ mph). They reported that roundabouts out-perform 

their signalized counterparts by nearly a 50% reduction in injury and fatal crashes; one 

specific site demonstrated an 80% reduction in expected crashes after conversion to 

roundabouts.  

Also as mentioned earlier, Rodegerdts (2007) conducted an EB before-after study 

comparing the performance of traditionally controlled intersections with roundabouts. The 

study concluded that roundabouts reduced both overall crash rates and injury crash rates in a 

wide range of settings, including urban, suburban, and rural. All types of crashes were 

reduced by approximately 35.4% and injury crashes were reduced by 75.8%. For the nine 

rural roundabouts studied in the report, all of which were converted from TWSC 
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intersections, the total crash reduction was 71.5 % and injury crashes were reduced by 

87.3 %. For the 24 suburban roundabouts converted from signalized or TWSC intersections, 

the total crash reduction and injury crashes reduction were about 42% and 68%, respectively. 

In Maryland, crash reports of 149 crashes at twenty-nine single-lane roundabouts and 

134 crashes at nine double-lane roundabouts were reviewed (Mandavilli et al. 2009). Several 

of the roundabouts in the study were rural roundabouts on high-speed roadways; about three 

quarters of all reported collisions were at roundabout entrances and a high approach speed 

was an important factor in crashes.  

When considering factors affecting safety at roundabouts, another concern besides 

high vehicle speed is the difference in speeds between entering and circulating traffic, and 

between circulating and exiting traffic. Either a very large or very small difference between 

the speed of the entering traffic and the speed of the circulating traffic creates potential for a 

crash (Angelastro 2011).  

Isebrands (2012) conducted a study on rural roundabouts with high-speed approches. 

A before-after crash analysis using a negative binomail regression model and a before-after 

EB estimation were both conducted and showed consistent results. The negative binomial 

regression showed that total crashes were reduced by 63% and injury crashes by 88% at 

nineteen rural roundabouts with high speed approaches. The before-after EB estimation 

showed reductions of 67% in total crashes and 87% in injury crashes.  

An evaluation of 24 roundabouts was conducted in Wisconsin (Qin et al. 2013). The 

EB before-after analysis showed an overall reduction of 9.2% in total crashes in all locations 
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and a 52% reduction of fatal and injury crashes. Eight of the 24 roundabouts were identified 

as rural; these roundabouts experienced reductions of 45% in total crashes and 56% in fatal 

and injury crashes. The study included 11 roundabouts with posted speed limits of 45 mph or 

greater. These roundabouts experienced reductions of 34% in total crashes and 49% in fatal 

and injury crashes.   

Although almost all of the roundabout guidance indicated significant benefits of 

roundabouts at rural high-speed locations, the application of this type of roundabout is one of 

the slowest to emerge in the United States. The Maryland State Highway Administration 

constructed their first roundabouts in the mid-1990s, several of which were rural applications, 

followed by the Kansas Department of Transportation in 2001, and the Washington State 

Department of Transportation in 2004. To date, the Wisconsin Department of Transportation 

has constructed the most rural roundabouts starting from 2005 (Isebrands 2011). As the 

number of modern roundabouts grows rapidly in the United States, new data is more 

available for U.S.-specific research.  

1.2.5.2 Multilane 

(1) International Experience 

Hagring et al. constructed a multilane roundabout capacity model based on a two-lane 

roundabout in Copenhagen, Denmark (Hagring et al. 2003). The primary objective was to 

evaluate the need for more complex capacity models than currently exist in order to properly 

represent driver gap-acceptance behavior at multilane roundabouts.  

Yin and Qiu (2011) compared the operation performance of a two-lane roundabout at 
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the intersection of two rural arterial highways in Alberta, Canada based on the analysis 

results from two different types of software. One is a macroscopic traffic analysis software 

(SIDRA) and the other is a microscopic simulation package (VISSIM). The results showed 

that there was no significant difference for the delays predicted by the two types of software 

at medium-to-high traffic flow rates and at all left-turn proportion levels. Queue length 

predicted by VISSIM was longer than those predicted by SIDRA. Good correlation existed 

between predicted delays and queue length. They also mentioned roundabout capacity could 

be estimated by a delay curve obtained from the method presented in their study. 

Taylor (2012) evaluated the capacity of two-lane signalized roundabouts under 

saturated conditions in Australia. A signalized roundabout using the standard phasing 

technique is a viable option for replacing an existing un-signalized roundabout that is failing 

to cater for capacities, especially in cases where the intersection has a high percentage of 

right turn movements, pedestrian flows, and is located in an urban environment. 

(2) U.S. Experience 

NCHRP 3-65 (Rodegerdts 2004) and the final report of NCHRP Report 572 

(Rodegerdts 2007) provided a before/after analysis for multilane roundabouts. They found 

that conversion from a signalized intersection to a multilane roundabout (four sites, suburban 

settings) yielded a 67% reduction in all crashes. Only two crashes involved injury in the 98 

crashes reported in the after period. Conversion from a two-way stop to a multilane 

roundabout (11 sites, urban/suburban settings) yielded an 18% reduction in all crashes and a 

72% reduction in injury crashes. Of the 272 crashes in the after period, 13 involved injuries 
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(Weber 2007). 

Lee’s research project examined the performance of two multilane roundabouts in 

Anchorage, which were the first multilane roundabouts constructed in Alaska in 2004 (Lee 

2010). Results showed that extended queues observed at the roundabouts were due to 

unbalanced flow patterns that caused high circulating flow in front of one roundabout. The 

high circulating flow resulted in low-capacity, high-delay queue values.  

Xiao Qin et al. conducted a roundabout crash research based on Wisconsin 

roundabouts (Qin et al. 2011). They evaluated roundabouts’ performance in varying situations 

by analyzing crash trends and patterns. They also developed crash prediction models, which 

would help in quantifying roundabout safety, especially when selecting which locations to be 

converted to roundabouts. Forty-one roundabouts with varied configurations, layouts, design 

features, previous traffic control, and traffic volumes were selected as the research sample. 

Eighteen of them were single-lane roundabouts and twenty-three were multilane roundabouts. 

Multilane roundabouts have some of the same safety performance characteristics as 

single-lane roundabouts. However, multilane roundabouts introduce additional conflicts due 

to the presence of additional entry lanes and the accompanying need to provide wider 

circulatory and exit roadways. Crash frequencies increase with the number of circulating 

lanes (Rodegerdts et al. 2010). Although the number of conflicts increases at multilane 

roundabouts when compared to single-lane roundabouts, the overall severity (and often 

number) of conflicts is typically less than other intersection alternatives (Rodegerdts et al. 

2010). 
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Table 1.5 is a summary of the high-speed rural/suburban roundabouts or multilane 

roundabouts discussed in this subsection (1.2.5). 

 

Table 1.5 Safety research on high-speed/rural/suburban or multilane roundabouts 

International 

Experience 

Roundabouts Major Findings 

France (Guichet 1997) Rural Roundabouts have less severe injuries than that of 

traditional intersections. Roundabouts were also found 

to be safer in urban areas than in rural areas. 

New Zealand (Traffic 

Design Group of 

Lower Hutt 2000) 

Rural Inadequate signing in rural area may be a reason for 

high approaching speed and driver confusion. 

New Zealand (Thomas 

and Nicholson 2003) 

Rural Lower level of alertness in rural roundabouts requires 

supplementary measures on the approach to warn 

drivers in advance. 

New Zealand (Turner 

& Roozenburg 2006) 

High-speed 

(45mph+) 

High-speed roundabouts have more injury crashes 

than those with lower speeds. 

Belgium (Antoine 

2005) 

Including rural, 

suburban 

An average of 42% decrease in injury crashes and 

48% decrease in serious crashes in all settings. Rural, 

suburban and urban roundabouts had a 50%, 46% and 

15% crash reductions, respectively. 

Albert (Steel et al. 

2007) 

Rural Roundabouts improve the overall safety performance. 

Denmark (Hagring et 

al. 2003) 

Multilane Developed a multilane roundabout capacity model that 

reflected driver gap-acceptance behaviors 

Alberta, Canada (Yin 

and Qiu 2011) 

Two-lane, rural Compared the operational performance analysis 

results of two different software packages.  

Australia  (Taylor 

2012) 

Two lane, 

signalized 

A signalized roundabout using the standard phasing 

technique is a viable option in replacing an existing 

un-signalized roundabout. 

U.S. Experience Roundabouts Major Findings 

Multiple states 

(Flannery and 

Elefteriadou 1999) 

Rural, single-

lane, high-speed 

Inadequate speed reduction might be an important 

reason for crashes at high-speed rural roundabouts.  

Maryland  (Myers 

1999) 

Rural, high-

speed 

Total accidents were reduced by 59% and injury 

accidents were reduced by 80%. 

Multiple states 

(Persaud et al. 2001) 

Including rural The five rural single-lane roundabouts experienced a 

58% reduction in total crashes and an 82% reduction 

in injury crashes. 

Multiple states 

(Eisenman et al. 2004) 

Including 

multilane 

Total collisions were reduced by 47%, and injury 

collisions were reduced by 72%. Multilane 

roundabouts are more prone to property damage only 

(PDO) collisions. 

Multiple states  

(Johnson and Flannery 

2005) 

Rural, high-

speed, single-

lane 

Simple linear regression equations were developed to 

estimate the differential in speeds. 

Multiple states (Richie High-speed Roundabouts out-performing their signalized 
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and Lenters 2005) (45mph+) counterparts by nearly a 50% reduction in injury and 

fatal crashes. 

Multiple states 

(Rodegerdts 2007) 

Including rural The included 9 rural roundabouts that were converted 

from TWSC intersections had a total crash reduction 

of 71.5 % and injury crash reduction of 87.3 %. The 

included 24 suburban roundabouts that were converted 

from signalized or TWSC intersections had a total 

crash reduction of 42% and an injury crashes 

reduction of 68%. 

Maryland (Mandavilli 

et al. 2009) 

Single-lane and 

multilane, some 

are in rural 

High approach speeds were pointed out as an 

important driver crash factor. 

Multiple states  

(Isebrands 2009) 

High-speed 

(40+ mph), 

rural 

Total crashes were significantly reduced by 62% - 

68% and injury crashes by 85% - 88%. Angle crashes 

were reduced by 83%. 

Wisconsin  (Qin et al. 

2011) 

Including rural 

and high-speed 

(45+) 

Eight of the 24 roundabouts were identified as rural; 

they experienced reductions of 45% in total and 56% 

in fatal and injury crashes. A total of 11 roundabouts 

had posted speed limit of 45 mph or greater. These 

roundabouts experienced reductions of 34% in total 

and 49% in fatal and injury crashes.   

NCHRP Report 

(Rodegerdts 2004, 

2007) 

Multilane, 

urban/suburban 

67% reduction in all crashes after converting from a 

signalized intersection to a multilane roundabouts (4 

sites, suburban); conversion from a two-way stop to a 

multilane roundabout (11 sites, urban/suburban) 

yielded an 18% reduction in all crashes and a 72% 

reduction in injury crashes. 

Alaska (Lee 2010) multilane Unbalanced flow patterns cause high circulating flow 

which results in low-capacity, high-delay queue 

values. 

Wisconsin  (Qin et al. 

2011) 

Including 

multilane 

A total of 23 roundabouts were multilane.  

Multiple states 

(Rodegerdts et al. 

2010) 

Including 

multilane 

Crash frequencies increase with the number of 

circulating lanes. But the overall severity (and often 

number) of conflicts is typically less than other 

intersection alternatives. 

 

 

1.2.6 Design Issues for Rural High-Speed Multilane Roundabouts  

1.2.6.1 Design Speed 

Several studies have investigated the controlling speed through the roundabout. The 

guideline as a desirable maximum entry speed for multilane roundabouts is 25 to 30 mph 

(Rodegerdts et al. 2010). Since the 85th percentile speed in rural areas is much higher than the 
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desirable maximum entry speed, the negotiating speed of roundabouts should be carefully 

taken into consideration (Singh et al. 2011) (Thomas and Nicholson 2003). The speed of 

vehicles negotiating roundabouts is dependent upon the geometry of the facility. The entry 

path radius should not be significantly greater than the circulatory radius in order to maintain 

an appropriate speed reduction rate when dealing with the secondary curve (Thomas and 

Nicholson 2003).  

1.2.6.2 Sight Distance 

In rural areas, the speed of the vehicle is normally high, so providing safe sight 

distance is crucial. The sight distance of the roundabout depends on the approach speed and 

negotiating speed (Turner et al. 2009). One study investigated driver sight distance as an 

independent variable to predict passenger vehicle speed and vehicle crash rates at 26 single-

lane roundabouts. Three regression models indicated that driver sight distance is a 

statistically significant predictor of approach speed, negotiating speed, and the difference 

between approach and negotiating speed (Angelastro 2011). The research showed that vehicle 

speeds and crash rates at modern roundabouts in the United States are related to driver sight 

distance. Meanwhile, sight distances provided must be equal to all approaches in the 

roundabout. If one approach leg has better sight distance than the others, it allows vehicles on 

that leg to approach the roundabout at much faster speeds than vehicles at the other entries 

(Thomas and Nicholson 2003). 

The approach to the roundabout should be aligned so that the driver has a good view 

of the splitter island, the central island, and preferably, the circulating roadway. There are two 
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types of sight distance: stopping sight distance and gap acceptance sight distance. Adequate 

approach stopping sight distance should be provided to the yield line (Rodegerdts et al. 

2010). In terms of gap acceptance sight distance, there are two geometric aspects: sight 

distance external to the inscribed circle for other vehicles approaching the roundabout in the 

roadway to the left, and sight distance within the inscribed circle for vehicles already in the 

circulating roadway (Florida Department of Transportation 1995). Figures 1 and 2 below 

represent both stopping and gap acceptance sight distance. 

 

 

Figure 1.1 Stopping sight distance (Source: Technical Summary of Roundabouts FHWA) 
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Figure 1.2 Gap acceptance sight distance (Source: Florida Roundabout Guide 1995) 

 

 

1.2.6.3 Roundabout Layout 

A well-designed geometric layout enables safety optimization in roundabouts. There 

are several issues that refer to the roundabout layout.  

(1) Entry Path Deflection 

First, it is crucial to provide proper deflection on each approach, and adequate 

deflection to control traffic speed through the roundabout should be emphasized (Bramwell 

1986; Montella 2007; Davis et al. 2003). In order to slow vehicles down before they meet the 

circulating traffic stream, sufficient deflection is required. If the entry path is obviously too 

tangential, the arriving vehicles tend to be too fast right before merging with the circulatory 

traffic stream. On the other hand, if the entry path curvature is too tight as with perpendicular 
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or sharply curved entries, there is a rise in single vehicle crashes (LENTERS 2004). Figures 

below show the examples of a roundabout having too much deflection (fig. 1.3) and 

insufficient deflection (fig. 1.4). When it comes to the size of the central island, the bigger 

central island can ensure that drivers cannot take a straight line through the roundabout when 

the deflection angle is too small (LENTERS 2004). However, several studies have found that 

the larger the traffic island, the higher the accident rate becomes (Elvik 2003).  

 

 

Figure 1.3 Over-deflected entry 

 

 

Figure 1.4 Insufficient entry path (Source: Safety Auditing Roundabouts 2004) 
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(2) Entry width  

Entry width is a dominant factor in both the capacity and safety of a roundabout. The 

widening of entries leads to an increased capacity (Highway Capacity Manual 2010), but also 

an increase in accidents since wider entry width exposes pedestrians to traffic for a longer 

duration (LENTERS 2004).  There are two options when additional entry capacity is needed 

(Rodegerdts et al. 2010). One is adding a full lane upstream of the roundabout and 

maintaining parallel lanes through the entry geometry, while the other is widening the 

approach gradually (flaring) through the entry geometry. Figures 1.5 and 1.6 below show the 

two options.  

 

Figure 1.5 Approaches widening by adding a full lane (Source: Roundabouts Informational 

Guide 2000) 
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Figure 1.6 Approaches widening by entry flaring (Source: Roundabouts Informational Guide 

2000) 

 

 (3) Vehicular Path Overlap 

Path overlap occurs when the natural paths of vehicles in adjacent lanes overlap or 

cross one another. It occurs most commonly at entries, where the geometry of the right-hand 

lane tends to lead vehicles into the left-hand circulatory lane (Kansas Department of 

Transportation 2003). Figure 1.7 below shows vehicular path overlap, and the preferred 

design technique to avoid the problem for multilane entries is illustrated in figure 1.8. The 

design consists of a small-radius entry curve set back from the edge of the circulatory 

roadway. A short section of tangent is provided between the entry curve and the circulatory 

roadway to ensure vehicles are directed into the proper circulatory lane at the entrance line 

(Kansas Department of Transportation 2003). 
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Figure 1.7 Vehicle path overlap (Source: Technical Summary of Roundabouts FHWA) 

 

 

 

 

Figure 1.8 Design technique to avoid path overlap at entry (Source: Technical Summary of 

Roundabouts FHWA) 

 



35 

 

 

Figure 1.9 Vehicle path overlap at two-lane roundabouts (Source: Technical Summary of 

Roundabouts FHWA) 

 

 (4) Recognition of Central Island and Splitter Island 

The results of an unclear or ambiguous central island or splitter island result in control 

crashes of drivers who are unfamiliar with negotiating roundabouts (LENTERS 2004). 

Maintaining the largest splitter island possible and using vertical curb face is necessary to aid 

in deflecting traffic on the approach to a roundabout entry, as well as providing an adequate 

refuge for pedestrians. Also, curb, gutter, or splitter islands help drivers negotiate the 
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roundabout safely by providing good deflection and speed adjustment at the entry. In 

multilane roundabouts, usage of splitter islands could be more emphasized because path 

overlap may happen (City of Colorado Springs 2005) 

(5) Signs and Markings 

Inappropriate or poorly designed signs and markings cause drivers to have guidance 

or navigational mistakes while negotiating roundabouts (Lord et al. 2007). Such driving 

mistakes usually do not cause serious crashes, but those errors can direct drivers in a wrong 

way in a multilane roundabout where frequent circulatory lane changes exist (Kinzel 2003). 

Traffic signs and road markings should be an essential element of the design procedures for 

roundabouts because lane designation may be closely related to entry and exit design and 

splitter layout (LENTERS 2004). 

1.2.6.4 Other Design Issues 

(1) Road Markings 

Yellow bar markings on the approach to roundabouts is one option to make the 

vehicle wary and slow down before negotiating the roundabout (Kinzel 2003). These 

markings may be particularly suitable on rural roundabout approaches where background 

visual stimuli are lacking (LENTERS 2004).  

(2) Lighting 

Illuminating the roundabout should be given considerable attention since positive 

contrast lighting and vertical luminance is essential for pedestrian and signage visibility 

(LENTERS 2004). There are several findings (Lutkevich et al. 2004): (a) in the roundabout 
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area, lighting should be provided at all roundabouts, including those in rural locations; (b) 

approach lighting is important for providing good visibility throughout the roundabout; and 

(c) a minimum level of vertical illumination at pedestrian crosswalks is recommended. 

However, in rural conditions, illumination is recommended but not mandatory. If the 

roundabout is without light, it should be well signed and marked so that it can be correctly 

perceived day and night (American Association of State Highway and Transportation 

Officials [AASHTO] 1985). In general, the use of reflective pavement markers and retro-

reflective signs should be used when lighting cannot be installed in a cost-effective manner 

(Robinson and Rodegerdts 2000). 

1.2.7 Safety of Pedestrians and Cyclists at Roundabouts 

Roundabouts have their own advantages and disadvantages over pedestrians and 

cyclists when compared to conventional intersections. International and U.S. research about 

pedestrians and cyclists safety at roundabouts is reviewed.  

1.2.7.1 International Experience 

A study in the Netherlands in 1993 examined collision experiences at 181 

intersections converted to roundabouts. Pedestrian collisions dropped 73% and pedestrian 

casualties dropped 89%. A Swedish study concluded that single-lane roundabouts are very 

safe for pedestrians, at about a 78% reduction in injuries, and that multilane roundabouts are 

about as safe as other intersections (Weber 2007).  

Cyclists at roundabouts have about the same number of conflicts as drivers or 

pedestrians since they have the option to travel as a vehicle or pedestrian. However, because 
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cyclists usually ride on the right side, they may face additional conflicts due to overlapping 

paths with motor vehicles when travelling through or exiting a roundabout as a vehicle, 

which is a typical case at multilane roundabouts. As to bicyclist safety at roundabouts in 

North America, there is even less research than that pedestrian safety. A study conducted in 

western France at 1,238 signalized intersections and 179 roundabouts found that in 

proportion to the total number of crashes, two-wheeled vehicles were involved in crashes 

more often at roundabouts (+16%), but were involved in injury crashes more often at 

signalized intersections (+77%). A study in Sweden at 72 locations concluded that at single-

lane roundabouts bicyclists were involved in 20% fewer injury collisions than at other 

intersections. However, at multilane roundabouts they were twice as likely to be involved in 

light injury crashes. Studies in the Netherlands showed that roundabouts decreased bicyclist 

injuries by 44% to 73%. Separate bicycle paths were found to be the safest, while a bicycle 

lane within the circulatory road was found to be the least safe  (Weber 2007). 

In Sweden, nearly 1,000 roundabouts are in operation. Three separate national 

research studies were conducted to determine the safety of roundabouts, including a speed 

analysis study in 536 roundabouts, a safety study of cyclists and pedestrians in 72 

roundabouts, and a motorist safety study in 182 roundabouts. Roundabouts are found to have 

provided equal or better pedestrian safety than their conventional intersection counterparts. 

Multilane roundabouts have more cyclist accidents (six times) than single lane roundabouts, 

although this was likely due to the volume difference. They also found that central island 

diameters greater than 10 meters were safer than those smaller than 10 meters (Brude 2000). 
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Daniels et al. (Daniels et al. 2008) conducted a roundabout study on bicyclists in 

Flanders-Belgium. They included both single- and multilane roundabouts in their sample. 

The before/after study reveals that roundabouts increased injury collisions involving 

bicyclists by 27% and severe injury collisions by up to 46%. In 2009, they launched another 

study to determine if bicycle facilities within roundabouts have any effect on bicyclist safety. 

They unexpectedly found that roundabouts with cycle lanes increased bicycle injury 

collisions significantly (as opposed to roundabouts with separate cycle paths, grade separated 

paths, or no bicycle facilities) and suggested that a clear distinction should be made between 

roundabouts with cycle lanes and those with other types of facilities. 

1.2.7.2 USA Experience 

Baranowski and Waddell (Baranowski and Waddell 1997) discussed pedestrian and 

vehicle crashes and design practices at roundabouts in Australia, France, Great Britain, and 

the USA. A significant reduction in pedestrian accidents was found after roundabouts were 

installed. Two newly constructed roundabouts in the USA at that time that used alternate 

design methods to reduce travel speeds were compared, both of which were two-lane 

roundabouts. One alternative, the tight-exit design, was analyzed, and results showed it has 

little benefit for pedestrians by reducing speed, and in some cases may endanger them by 

limiting sight-distance for drivers.  

The IIHS study (Persaud et al. 2000) shows that none of the U.S. multilane 

roundabouts under their study have had a single pedestrian crash after the installation, even 

though there were two crashes during the before period at these sites. 
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As indicated in the FHWA guide (Robinson and Rodegerdts 2000), the risk of 

pedestrian-vehicle crashes increase if there are multiple lanes of exiting or entering traffic as 

opposed to a single lane. Bicyclists may conflict with vehicles in the same way as pedestrians 

if cyclists are using bike lanes or sidewalks, and may go through the same conflicts with 

vehicles if cyclists choose to ride on the roadway.  

A study conducted in 2002 in Park City, Vail, West Vail, and Avon, Colorado, showed 

two pedestrian crashes prior to the roundabouts operating with over 164 million vehicle 

movements, compared to one pedestrian crash with roundabouts experiencing over 282 

million vehicle movements (Weber 2007). 

Furtado studied the accommodation of vulnerable road users in roundabout design 

(Furtado 2004). The author mentioned that given a properly designed roundabout facility, the 

vehicular and pedestrian safety at roundabouts is almost always improved when compared to 

conventional intersections. Cyclist safety is somewhat mixed. Due to the elimination of 

conflict points at roundabouts and the lower speed differentials compared to conventional 

intersections, accident severity for all users is often significantly reduced when collisions 

occur, although frequency may increase.  

Arnold et al. (Arnold et al. 2010) examined the safety and demand issues for 

pedestrians and bicyclists at multilane roundabouts. Literature reviews, case studies, in-field 

counts and surveys, focus groups, and video analyses were conducted. Bicyclists and 

pedestrians did not show an actual preference for using traditional intersections, but 25% of 

bicyclists and 14% of pedestrians surveyed stated that they would change their route to avoid 
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multilane roundabouts. According to self-reports, bicyclists were more likely than pedestrians 

to report feeling uncomfortable traveling through the multilane roundabout. When having a 

choice, pedestrians equally prefer signalized intersections and roundabouts, but bicyclists 

prefer signalized intersections and not roundabouts. Observational studies also found that 

pedestrians are more likely to hesitate at multilane roundabouts than at other types of 

intersections (Harkey and Carter 1982) and pedestrians experience longer waiting times and 

more risky crossings at multilane roundabouts (Ashmead et al. 2005). 

1.2.8 Some Other Significant Safety Studies on Roundabouts 

The FHWA roundabout informational guide identifies that the several features that 

have the most crash problems are inadequate entry deflection, long straight sections of 

circulatory roadway, and sharp turns into exits (Robinson and Rodegerdts 2000). A number of 

safety studies have been conducted to evaluate the performance of U.S. roundabouts since the 

publication of the FHWA Roundabout Guide. 

Chapter 5 of the Kansas Roundabout Guide discusses roundabout safety (Kansas 

Department of Transportation 2003). Typical crash patterns at roundabouts are identified 

based on data collected from countries outside of the United States and then transferred to the 

United States. Failure to yield at entry, a single-vehicle running off the circulatory roadway, 

single vehicle loss of control at entry, and rear-end at entry are the top four types of crashes in 

all countries researched.  

The ITE Transportation Safety Council developed an informational report that 

identified safety benefits of modern roundabouts, as well as specific design practices and 
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features that enhance safety at roundabouts (Isebrands and Retting 2008). It provides a 

synthesis of available research, including international experience. It also includes a summary 

of available information regarding geometric design features, traffic control devices, and 

lighting and landscaping elements to further enhance safety at roundabouts. 

In 2006, Ourston Roundabouts Canada completed a “Synthesis of North American 

Roundabout Practice” for TAC. Chapter 5 of this synthesis (Weber 2007) presents the results 

of roundabout safety. The reason that roundabouts have a high potential for safety was 

explained. Many studies undertaken in North America and other countries were studied to 

evaluate the effects of roundabouts on the safety of motorists, pedestrians, and bicyclists. A 

web-based survey was conducted, aiming to find measures that maximize safety potential. 

These measures may vary depending on whether the roundabouts are single-lane or multilane 

and whether there are any high-speed approaches. 
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Chapter 2 Survey of State and Local Transportation Agencies 

2. 1 Objective 

A telephone survey was conducted with the objective of collecting information from 

various state and local transportation agencies across the US regarding safety issues 

experienced with roundabouts including measures for mitigation of those issues. However, 

before the survey, a review of news media on the Internet was undertaken to identify public 

concerns with roundabouts and remedial measures undertaken by transportation agencies.  

2.2 Identification of Potential Issues from News Media 

The research team searched news articles on the Internet and found 51 news articles 

related to public concerns on roundabouts across the states. While the news articles were 

written from a variety of perspectives, the major public concerns were as follows: 

(1) Driver confusion about newly constructed roundabout,  

(2) Drivers lack of knowledge of roundabout negotiation rules,  

(3) Small size and narrow lanes for some of the roundabouts, 

(4) Unclear signage at or in proximity of roundabouts,  

(5) Difficulty for large vehicles to negotiate roundabouts,  

(6) Lack of advance warning signs regarding roundabout presence,  

(7) Limited access to nearby businesses during roundabout construction,  

(8) Cost concerns regarding roundabouts in comparison to signalized intersections,  

(9) Confusion amongst drivers between modern roundabouts and old traffic circles, 

(10) Pedestrian and bicyclist safety at roundabouts, and 
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(11) Complaints about multilane roundabouts. 

From the review of the news articles a few general characteristics of “problematic” 

roundabouts emerged. These included: 

(1) Design flaws, including curves that were too subtle, allowing drivers to travel 

through at a fairly high speed, 

(2) Confusing signage, and 

(3) Dark or poorly marked roundabouts. 

Mitigation strategies mentioned in these news articles included roundabout 

realignment, reconstruction, or modifications; installation of more flags and signage; and 

more education for the users and alterations to landscape for improved visibility. 

2.3 Survey Process 

A sampling frame was established that included baseline contacts for various 

transportation agencies. The baseline contacts served as points of “first contact” with an 

agency. The nature and objectives of the survey were explained to these first contacts and 

they were asked if they were the most appropriate person in that agency to provide response 

to the telephone survey; if not, they were asked to provide the contact information for the 

most relevant person that could be interviewed. Telephonic and/or email contact with 

respondents to the survey began on July 11th, 2014 and ended August 29th, 2014; most of the 

respondents were traffic engineers who provided responses on behalf of their respective 

agencies. In some instances respondents were contacted through email when telephone 

messages were not returned or when email was the only contact information. Email reminders 
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were sent after approximately one week following the initial email in cases where no 

response was received.  

Appendix A presents the survey questionnaire. Upon completion of the survey, the 

respondent’s phone number was recorded in an Excel spreadsheet along with his/her 

responses. A total of 25 surveys with different state and local agencies were successfully 

completed. 

2.4 Survey Outcomes 

 Figure 2.1 shows the states in which a transportation agency was surveyed. Twelve 

out of the 25 responding agencies acknowledged experiencing safety issues after roundabouts 

were constructed. In total, 20 roundabouts were mentioned by these 12 responding agencies.  

 

 

Figure 2.1 Map of States from Where a Transportation Agency Responded 
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The 12 agencies that reported safety issues were Alaska DOT and Public Facilities; 

Public Works Department, City of Davis, California; Indiana DOT; Washington County, 

Kentucky; Minnesota DOT; Mississippi DOT; Nebraska Department of Roads; New 

Hampshire DOT; New York DOT; Franklin County, Ohio; Virginia DOT; and Wisconsin 

DOT. Major safety issues mentioned by these agencies included: 

(1) Drivers not familiar or confused with navigation, 

(2) Drivers driving too fast, 

(3) Undersized roundabouts, 

(4) Drivers’ rough adjustment period after conversion, 

(5) Increase in sideswipe and rear-ending crashes, 

(6) Sudden speed changes before roundabouts, 

(7) Drivers “missing” roundabouts alignment, 

(8) High navigating speed due to poor design (e.g., lack of enough deflection), 

(9) Driver exiting from the wrong lane at multilane roundabouts and causing 

sideswipe accidents, 

(10) Crashes due to drivers missing the roundabout turn,  

(11) Maps and GPS did not update timely after construction changes were made, and 

(12) Heavy traffic, close proximity to railroads, too many different signs in very urban 

areas confusing drivers, and location in a high density student housing area. 

Main public concerns or media publicity that were encountered included the 

following: 
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(1) New roundabouts were confusing/unfamiliar; motorists tried to avoid roundabouts, 

(2) Significant resistance to roundabouts in the beginning, 

(3) Concerns from older drivers, 

(4) Drivers did not yield to the vehicles in the circle, 

(5) Increased crashes, 

(6) Request for additional signs and markings, 

(7) Bicyclists’ concerns of changing travel lanes, 

(8) Concerns for pedestrian safety, 

(9) Difficulty in negotiating multilane roundabouts, 

(10) Noise due to rumble strips installed on roundabout approaches, and 

(11) Effectiveness of the inside apron. 

Countermeasures mentioned by the responding agencies mainly focused on the 

following aspects, the results of which were said to be effective in terms of helping drivers 

navigate roundabouts, lowering crashes, and reducing public complaints related to 

roundabouts. 

(1) Speed control by adding speed bumps on roundabout approach entrances and exits 

including striping; addition of transverse rumble strips; use of adequate deflection 

angles on approaches to reduce vehicle speeds, 

(2) Installation of “Yield to Traffic in Circle” signs and yield triangle markings on all 

roundabout approaches, 

(3) Improved pavement markings and signage to help with roundabout navigation,  
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(4) Use of law enforcement to ensure appropriate navigation of roundabouts, 

(5) Reduction in the number of roundabout lanes to reduce driver confusion at 

multilane roundabouts and addition of median fencing to separate opposing traffic 

flows, 

(6) Inclusion of pedestrian-related signage for improving pedestrian safety at 

roundabouts,  

(7) In-depth study and safety analysis to isolate design flaws and redesign of 

roundabouts, 

(8) Use of larger signs; stripes; reflective paint on curbs; improvements in roundabout 

lighting; public campaigns to help drivers understand roundabout negotiation 

rules; giving drivers time to get familiar with roundabouts, 

(9) Avoidance of roundabouts in proximity of highway-rail grade crossings, and 

(10) Peer review of roundabout design.  

The surveyed agencies also provided valuable experiences in dealing with single-lane 

and multilane roundabouts. Surveyed agencies were mostly pleased with the operation and 

safety performance of single-lane roundabouts. Single-lane roundabouts were deemed much 

less challenging than multilane roundabouts. However, some responding agencies were 

concerned with increased rear-end crashes, speeding, and less space for larger vehicles at 

single-lane roundabouts. For multilane roundabouts, adequate design was deemed more 

challenging; however many of the surveyed agencies did not have adequate experience with 

multilane roundabouts. The City of Davis, CA, indicated that it avoided multilane 
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roundabouts due to safety concerns for bicyclists. Howard County, MD, indicated avoidance 

of multilane roundabouts unless absolutely necessary. Virginia DOT indicated its preference 

to start with single-lane roundabouts and the subsequent addition of lanes, if necessary. 

Indiana DOT mentioned the need to train snow plow drivers on the use of roundabouts. New 

York DOT underscored the need for ensuring pedestrian safety at multilane roundabouts 

while Wisconsin DOT showed its concern regarding a higher likelihood of crashes. 

Recommendations to prevent negative publicity included the following:  

(1) Public education via media outreach campaigns,  

(2) Information dissemination of roundabout benefits regarding increased capacity 

and fewer/less severe crashes, lower roundabout retrofit/construction and maintenance 

costs, 

(3) Use of roundabout case studies for public education, and  

 (4) Encouragement of drivers to try driving through roundabouts and give drivers 

time to adapt. 
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Chapter 3 Safety of Rural Roundabouts 

The research team collected historical crash data from Kansas and conducted a safety 

analysis to investigate the safety benefits of converting two-way stop controlled intersections 

with high-speed approaches to modern roundabouts in rural areas.  

3.1 Study Objective 

Construction of modern roundabouts is becoming common in the United States. Their 

use in the United States began in the 1990s and has been increasingly popular since then 

(Rodegerdts 2007). Construction of roundabouts is one way to reduce vehicle collisions and 

improve the efficiency of intersections (Nebraska Department of Roads 2012). Numerous 

studies in the United States have shown that roundabouts are effective in urban environments, 

but published literature is relatively sparse on the safety performance of roundabouts 

constructed on high-speed (45-65 mph) roads in rural and suburban areas.  

A concern with roundabouts constructed on high-speed rural roadways is the speed 

differential of vehicles traveling on the roundabout approaches and roundabout entries. 

Roundabouts on high-speed roadways are not “high-speed roundabouts” (Isebrands and 

Hallmark 2012). With a well-designed roundabout, drivers are allowed to navigate at a 

reduced speed (15 to 30 mph) inside the roundabout (Isebrands and Hallmark 2012, Persaud 

et al. 2001, Rodegerdts 2010). Inadequate signing, absence of nighttime lighting, and possible 

lower levels of drivers’ alertness in rural environments may be some of the reasons causing 

high approach speeds and driver confusion at the roundabouts (Thomas and Nicholson 2003; 

Appleton and Clark 1998). Therefore, the research question addressed in this chapter is: “Are 
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roundabouts on rural high-speed roadways safer than traditionally controlled intersections?”  

Specifically, due to limited data, this chapter investigates the safety of roundabouts that were 

converted from two-way stop control (TWSC) intersections. 

Therefore, the objective of this chapter is to statistically quantify the changes in 

reported crashes before and after conversion of rural TWSC intersections with high-speed 

approaches to roundabouts. To answer the above questions, crash records on several TWSC 

intersections that were subsequently converted to roundabouts were collected from Kansas 

Department of Transportation (KDOT). A before-after analysis using the Empirical Bayes 

(EB) method, as given in the Highway Safety Manual (AASHTO 2010a), is utilized.  

3.2 Previous Studies 

Several studies have shown that roundabouts reduce crash frequencies as well as 

severities compared to their traditional traffic control counterparts (Rodegerdts 2007; Persaud 

et al. 2001; Rodegerdts 2010; Flannery and Datta 1996; Lanani 1975; Cunningham 2007; 

Maycock and Hall 1984; Persaud et al. 2000; Tudge 1990). Most of the roundabouts studied 

were in urban settings. Studies specially pertaining to rural roundabouts with high-speed 

approaches are relatively sparse. The few studies on rural roundabouts with high-speed 

approaches in the U.S. were summarized in the previous section (1.2.5).  

The reviewed literature showed that roundabouts are mostly safer than stop-controlled 

or signalized intersections in terms of total crash frequencies, especially injury crash 

frequencies. Roundabouts converted from stop-controlled or signalized intersections with 

high-speed approaches in rural and suburban areas had greater crash reductions than 
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roundabouts in low-speed urban settings. With a significant reduction in crash frequency and 

severities, substantial safety benefits of the conversion can be expected. However, more 

research work is still needed before we draw the conclusion that roundabouts are the most 

appropriate and cost-effective control for intersections with high-speed approaches in rural 

settings. This study therefore explores the safety performance and its corresponding 

economic values of roundabouts with high-speed approaches in rural settings, using data 

obtained from Kansas. The studied roundabouts were all TWSC intersections before 

conversion. 

3.3 Modeling Background 

The EB before-after analysis method uses safety performance functions (SPFs) to 

estimate what the expected average crash frequency would have been at a location where a 

safety improvement treatment was implemented, had the treatment not been implemented. It 

then compares the actual observed crashes after treatment application to the expected average 

if the treatment had not been applied to determine the treatment’s safety effectiveness 

(AASHTO 2010a). 

The fluctuation of crashes over time at a location makes it difficult to determine 

whether the crash frequency changes are due to a safety treatment or are due to natural 

fluctuation. When a site experiences high (low) crash frequency in a certain period, it is 

statistically probable that it will experience a comparatively low (high) crash frequency in the 

following period of similar duration. This phenomenon is known as regression-to-the-mean 

(RTM). Compared to a simple before-after analysis, EB results are adjusted by changes in 
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traffic volumes and corrected for potential biases from the RTM effect. The EB method is 

used in the Highway Safety Manual (AASHTO 2010a); the procedures are described as 

follows. 

The predicted average crash frequency for a year, 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, is expressed as per 

intersection per year. 

 

𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑁𝑠𝑝𝑓𝑥 × (𝐶𝑀𝐹1𝑥 × 𝐶𝑀𝐹2𝑥 × … × 𝐶𝑀𝐹𝑦𝑥) × 𝐶𝑥                       (2.1) 

where 𝑁𝑠𝑝𝑓𝑥 = predicted average crash frequency determined for base condition of the SPF 

developed for site type x,  

𝐶𝑀𝐹𝑦𝑥 = crash modification factors specific to SPF for site type x, and 

𝐶𝑥 = calibration factor to adjust SPF for local conditions for site type x. 

 

The expected average crash frequency for the before treatment period is expressed as per 

intersection summed for the entire before period. 

 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 = 𝑤𝑖,𝐵𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵 + (1 − 𝑤𝑖,𝐵)𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵                        (2.2) 

where, the weight for each site i is determined as: 

 

𝑤𝑖,𝐵 =
1

1+𝑘 ∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒𝑓𝑜𝑟𝑒 𝑦𝑒𝑎𝑟𝑠
                                                   (2.3) 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 = expected average crash frequency at site i for the entire before treatment 

period, 
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𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵 = observed crash frequency at site i for the entire before treatment period, 

and 

k = over-dispersion parameter for the applicable SPF. 

 

The predicted average crash frequency for each site i during each year of the after 

treatment period can be calculated in the same way. The adjustment factor, 𝑟𝑖, which accounts 

for the difference between the before and after treatment periods in duration and traffic 

volume at each site i is:  

𝑟𝑖 =
∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐴𝐴𝑓𝑡𝑒𝑟 𝑦𝑒𝑎𝑟𝑠

∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵𝐵𝑒𝑓𝑜𝑟𝑒 𝑦𝑒𝑎𝑟𝑠
                                                      (2.4) 

 

The expected average crash frequency for each site i over the entire after period in the 

absence of the treatment is: 

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴 = 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 × 𝑟𝑖                                                 (2.5) 

 

The estimate of the safety effectiveness of the treatment at site i can be expressed in the form 

of an odds ratio, 

𝑂𝑅𝑖 =
𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴
                                                            (2.6) 

 

The percentage crash change at site i is: 

𝑃𝑖 = 100 × (1 − 𝑂𝑅𝑖)                                                      (2.7) 
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The overall effectiveness of the treatment for all sites combined, in the form of an odds ratio, 

is expressed as: 

𝑂𝑅′ =
∑ 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
                                                     (2.8) 

 

The odds ratio above is potentially biased. An unbiased estimate of the overall effectiveness 

is: 

𝑂𝑅 =
𝑂𝑅′

1+
𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 )

(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴)𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
2

                                                (2.9) 

In which, 𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 ) = ∑ [(𝑟𝑖)
2 × 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 × (1 − 𝑤𝑖,𝐵)]𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 . 

 

3.4 EB Before-After Crash Analysis 

3.4.1 Crash and Traffic Data 

Crash data on four rural high-speed (45-65 mph) intersections with two-way stop 

control that were converted to roundabouts were obtained from the Kansas Department of 

Transportation (KDOT). The period when two-way stop control was in effect was referred to 

as the “before” time period (i.e., before conversion to roundabouts), while the roundabout 

period was termed as the “after” period; conversion to roundabout was the safety treatment in 

each case. Crashes reported during the conversion year were excluded to remove any 

construction effects. Information for fatal, injury, and property-damage-only (PDO) crashes for 

each year in the before and after periods was utilized in the analysis. Table 3.1 presents the 

locations of the four roundabouts, the crash counts in the two time periods, and annual average 
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daily traffic (AADT) before and after roundabout conversion. 

 

Table 3.1 Information on the four intersections/roundabouts 
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200
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5 

200
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200

4 

20 14 
354

5 
2190 

2007

-

2010 

9 2 3370 2028 

 

 

The AADT information was collected from the KDOT historical state traffic flow map. 

In some instances AADT on the corresponding major road legs were different, in which case, 

the larger of the two values was recorded as the AADT for the major road (AADTmaj), 

consistent with the guidance in the Highway Safety Manual (AASHTO 2010a). The AADT on 

the minor roads (AADTmin) were determined in a similar manner. Traffic volumes did not 

change significantly after conversion of the TWSC intersections to roundabouts except for the 

US-400 & K-47 intersection. Traffic volumes for the four sites ranged from 2,000 to 7,000 
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vehicles/day. Annual average crash rates before conversion covered from 4.2 to 5.0 

accidents/year. 

While the characteristics of these four TWSCs that were converted to roundabouts may 

not be represent all TWSC intersections in the U.S. with respect to traffic volumes and number 

of crashes, they should be representative of TWSCs that have comparable crash histories and 

traffic volumes. 

3.4.2 EB Before-After Analysis 

Table 3.2 presents the results of the EB before-after analysis for total, fatal, non-fatal 

injury, and property-damage-only (PDO) crashes reported at each site. The odds ratios 

(column 5) were calculated by dividing the observed number of crashes by expected number 

of crashes; a value smaller than 1.00 indicates that a particular location experienced fewer 

crashes after conversion to roundabouts. Percentage reductions (column 6) represent crash 

reduction rates, and larger values represent greater crash reductions. The intersection at US-

400 & K-47 experienced an increase in total crashes after conversion, a 100% decrease in 

fatal crashes, and a slight decrease in injury crashes. The other three locations had a 

percentage reduction ranging from 45% to 84% for total crashes, 100% for fatal crashes, and 

from 80% to 100% for injury crashes. The results for the PDO crashes, however, were mixed 

as two locations experienced an increase in such crashes.  
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Table 3.2 Empirical Bayes analysis of all crashes 

Intersecting 

Roads 

Observed Total 

Crashes 

(Before) 

Observed Total 

Crashes (After) 

Expected Total 

Crashes (After) 

Odds Ratio 

(Observed/ 

Expected) 

Percentage 

Reduction % 

[100*(1-Odds 

Ratio)] 

Total Crashes 

US-400 & 

K-47 
21.00 9.00 8.03 1.12 -12.10 

US-400/US-

69A & K-66 
19.00 3.00 19.34 0.16 84.48 

E. Jct. of 

US-77 & 

US-166 

21.00 3.00 13.64 0.22 78.01 

US-50 & 

US-77 
20.00 9.00 16.31 0.55 44.81 

Fatal Crashes 

US-400 & 

K-47 
3.00 0.00 0.36 0.00 100.00 

US-400/US-

69A & K-66 
0.00 0.00 0.41 0.00 100.00 

E. Jct. of 

US-77 & 

US-166 

0.00 0.00 0.40 0.00 100.00 

US-50 & 

US-77 
3.00 0.00 0.43 0.00 100.00 

Non-Fatal Injury Crashes 

US-400 & 

K-47 
10.00 4.00 4.26 0.94 6.15 

US-400/US-

69A & K-66 
10.00 0.00 9.31 0.00 100.00 

E. Jct. of 

US-77 & 

US-166 

11.00 1.00 6.57 0.15 84.78 

US-50 & 

US-77 
11.00 2.00 9.60 0.21 79.17 

Property-Damage-Only (PDO) Crashes 

US-400 & 

K-47 
8.00 5.00 3.60 1.39 -38.99 

US-400/US-

69A & K-66 
9.00 3.00 10.02 0.31 68.85 

E. Jct. of 

US-77 & 

US-166 

10.00 2.00 10.84 0.29 70.69 

US-50 & 

US-77 
6.00 7.00 6.82 1.11 -11.04 

 

 

 



59 

Table 3.3 presents the results of aggregated analysis of all four locations, i.e., crashes 

at all locations in each time period were pooled for the analysis. The overall effectiveness of 

the treatment (conversion to roundabouts) for all sites combined can be expressed in the form 

of an odds ratio (column 5). This odds ratio is potentially biased, but an unbiased estimate of 

the overall effectiveness is presented in column 6. Overall, all types of crashes were reduced 

after conversion to roundabouts. Total crashes were reduced by 58.13%, fatal crashes were 

reduced by 100%, and injury crashes were reduced by 76.47%, while property-damage-only 

crashes were reduced by 35.49%. The results are mostly consistent with studies reported in 

the literature. 

 

Table 3.3 Empirical Bayes before-after analysis for all locations (aggregated) 

Crash Type 

Observed 

Crashes 

(After) 

Expected 

Crashes 

(After) 

Percentage 

Change % 

Odds 

Ratio 

Unbiased 

Odds Ratio 

Total 24.00 57.31 58.13 0.42 0.41 

Fatal 0.00 1.22 100.00 0.00 0.00 

Injury 7.00 29.74 76.47 0.24 0.23 

Property-damage-only 17.00 26.35 35.49 0.65 0.63 

 

The following assumptions were made in the EB analysis:  

1)  The TWSC intersections did not have any significant skew.  

2)  Except for the US-400 & K-47 intersection, the remaining three intersections 

had no left-turn lanes and no lighting during the before time period (the US-

400 & K-47 intersection showed a left-turn lane on each major approach as 

well as lighting before conversion on Google Map Street View, imagery 
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captured in November 2007). 

3)  All intersections were assumed to have no right-turn lanes and the local 

calibration factors (Cs) were assumed equal to 1.0. 

3.4.3 Before-After Analysis of Fatalities and Injuries in Crashes 

Table 3.4 presents the before-after analysis of fatality and injury rates at the four 

locations. Fatality and injury rates (on a per-year base) in all four locations were reduced after 

conversions to roundabouts. Fatality rates were reduced by 100% while injury rates were 

reduced by at least 60%. The analysis showed that severe crashes significantly decreased 

after the TWSC intersections were converted to roundabouts.  

 

Table 3.4 Before-after analysis of death and injury rates (per year) 

Location 

Death 

Rate 

(Before) 

Injury 

Rate 

(Before) 

Death 

Rate 

(After) 

Injury 

Rate 

(After) 

Death Rate 

Change % 

Injury 

Rate 

Change % 

US-400 & K-47 0.60 5.80 0.00 2.33 -100.00 -59.77 

US-400/US-69A 

& K-66 
0.00 4.75 0.00 0.00 - -100.00 

E. Jct. of US-77 

& US-166 
0.00 5.00 0.00 0.33 - -93.33 

US-50 & US-77 1.00 7.00 0.00 0.50 -100.00 -92.86 

All Sites 0.39 5.61 0.00 0.71 -100.00 -87.27 

 

3.5 Conclusion and Discussion 

Modern roundabouts provide an alternative to stop-controlled or signalized 

intersections, and conversions of existing intersections to roundabouts continue across the 

U.S. While the safety benefits of converting traditionally controlled intersections to modern 

roundabouts in urban settings have been well-documented, conversions of TWSC 



61 

intersections on rural, high-speed roadways to modern roundabouts have not been explored to 

the same extent. This chapter focused on the assessment of four rural high-speed approach 

TWSC intersections that were converted to roundabouts in Kansas. The evaluation 

procedures utilized were from the Highway Safety Manual (AASHTO 2010a).  

Results of the analysis showed that overall, all types of crashes were reduced after 

conversion of TWSC intersections to roundabouts. Total crashes decreased by 58.13%, fatal 

crashes were reduced by 100% at all locations, and non-fatal injury crashes were reduced 

with an overall reduction rate of 76.47%. Property-damage-only crashes were reduced by 

35.49% as a whole, but two out of the four sites experienced increases in property-damage-

only crashes after conversion to roundabouts. Based on a before-after analysis, fatality and 

injury rates were found to decrease at all four sites. In conclusion, the answer to the question 

“Are roundabouts on rural high-speed roadways safer than TWSC intersections?” is 

affirmative, and conversion of TWSC rural high-speed intersections to roundabouts provided 

similar safety benefits to their urban counterparts. The conclusions are consistent with 

previous studies on rural high-speed roundabouts. 
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Chapter 4 Economic Analysis 

To investigate the tradeoffs between converting a traditional stop controlled or 

signalized intersection to a roundabout on high-speed highways, this chapter uses the data 

collected from KDOT and answers the question, “What economic benefits can be expected 

from the conversion from TWSC intersections to roundabouts in terms of safety 

improvement?” Therefore, this chapter quantitatively evaluates the economic values of the 

changes in reported crashes before and after conversion of rural TWSC intersections with 

high-speed approaches to roundabouts. An economic evaluation is conducted based on the 

results of the previous safety analysis.  

4.1 Economic Analysis Method 

Economic benefits can be expected from conversions of intersections to roundabouts. 

The main safety benefits of converting a TWSC intersection to a roundabout are the assumed 

savings to the public due to a reduction in crashes in the before-after periods within the 

project area. Non-safety related benefits may include reductions in motorist delays, fuel 

consumption, and vehicle emissions. Safety benefit estimation requires crash history before 

and after conversion to a roundabout. The EB before-after analysis can be used to eliminate 

the effects of regression-to-the-mean and changes in traffic volumes during the before-after 

periods.  

As reviewed earlier, roundabouts basically reduce crashes compared to stop-

controlled or signalized intersections. Table 4.1 presents an estimate of average economic 

costs on a per accident basis for each severity level for the year 2000 available from the 
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American Association of State Highway and Transportation Officials (AASHTO 2010b). 

 

Table 4.1 Average comprehensive cost of motor-vehicle crashes by injury severity, 2000 

Severity Economic Cost Per Accident (2000 Dollars) 

Fatal $3,753,200 

Non-Fatal Injury $138,100 

Property Damage Only $3,900 

All Injury $202,300 

Source: AASHTO 2010b 

 

Safety benefits are then estimated by multiplying the change in number of crashes of 

each severity level by the average costs of each crash (Rodegerdts 2010). The results of this 

economic evaluation are shown in the following section. 

4.2 Economic Evaluation by Safety Benefit  

An important and a major component of the economic analysis is the avoided cost of 

crashes. Analysis in tables 3.2 through 3.5 revealed a significant decline in crashes after 

conversion of the TWSC intersections on rural, high-speed roads to roundabouts at the four 

sites as a group. In particular, the number of crashes in the years after roundabout completion 

was well below expected crashes, based on crash rates in the periods before conversions to 

roundabouts. The decline was particularly pronounced among injury crashes, suggesting that 

the conversion to roundabouts was reducing both the number and severity of crashes. Such a 

change would generate significant economic value in terms of safety benefits. These benefits 

are estimated in table 4.2.  
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Table 4.2 Value of avoided comprehensive crash costs over 3-4 years 

Crash Type 

Observed 

Crashes 

(After) 

Expected 

Crashes 

(After) 

Reduction 

in 

Crashes 

Comprehensive 

Crash Cost 

2014 

Crash 

Costs 

Avoided 

All Crashes 24.00 57.31 33.31 - - 

Fatal 0.00 1.22 1.22 $10,480,100 $12,785,700 

Injury (Non-Fatal) 7.00 29.74 22.74 $385,600 $8,769,000 

Property-damage-only 17.00 26.35 9.35 $10,900 $101,800 

Total (4 intersections over 3-

4 years) 
    $21,656,500 

 

Table 4.2 also reports crash cost estimates for fatal, non-fatal injury, and PDO 

crashes. Estimates are for 2014, which were based on values from 2000 reported in the 

AASHTO (AASHTO 2010b), and updated from 2000 to 2014 based on the change in the 

value of a statistical life reported for 2000 (Blincoe et al. 2000) and 2014 (Rogoff and 

Thomson 2013). There has been a sharp increase in the measured value of a statistical life 

from $3.4 million in 2000 to $9.4 million in 2014. This change partly reflects inflation and 

changes in real wages, but also reflects an updated methodology.  

The total value of the estimated 33.3 avoided crashes was $21.7 million. The value is 

large because the conversion to a roundabout helped reduce the severity as well as the 

number of crashes. For example, more than half of this amount, $12.8 million, resulted from 

avoiding 1.2 fatal crashes. Approximately 33.3 avoided crashes were avoided at the four 

roundabouts over a three- or four-year post roundabout construction period. The annual value 

of reduced crashes at a single intersection would be one-fourteenth as much, or $1.6 million. 

This result, however, depends to a significant degree on avoided fatal crashes at the 

roundabout. Six fatal crashes were reported at the TWSC intersections in the years before 
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they were converted to roundabouts, but none were reported afterwards. Given the small 

number of intersections and fatal crashes involved and comprehensive crash costs in excess 

of $10 million for each fatal crash, it is natural to wonder how much chance influenced the 

results. In particular, severe crashes may have occurred both before and after installation of 

the roundabout, but none were fatal after the roundabout was in use. This may reflect the 

relative safety of roundabouts, but also may simply reflect chance. To address the latter 

possibility, table 4.2 was revised by summing the fatal and non-fatal injury crashes to create a 

category for all injury crashes (fatal and non-fatal). The higher comprehensive crash cost in 

2014 ($567,700) for all injury crashes was utilized; table 4.3 shows the results.  

 

Table 4.3 Value of avoided comprehensive crash costs over 3-4 years with fatal and 

non-fatal injury crashes combined 

Crash Type 

Observed 

Crashes 

(After) 

Expected 

Crashes 

(After) 

Reduction 

in 

Crashes 

Comprehensive 

Crash Cost 

2014 

Crash 

Costs 

Avoided 

All Crashes 24.00 57.31 33.31 - - 

Injury (Fatal and Non-Fatal) 7.00 30.96 23.96 $567,700 $13,601,500 

Property-damage-only 17.00 26.35 9.35 $10,900 $101,800 

Total (4 intersections over 3-

4 years) 
    $13,703,400 

 

The total estimated value from the 33.3 avoided crashes was $13.7 million. This 

translated into avoided crash costs of $1.0 million per year at each intersection. Therefore, the 

estimate of the annual reduction in comprehensive crash costs from conversion of TWSC 

intersections to roundabouts on rural high-speed roads was between $1.0 million and $1.6 

million in 2014 dollars. Assuming a 20-year lifespan for a roundabout, the estimated 

monetary benefits due to avoided crashes were between 20.0 million and 32.0 million. 
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Safety benefits are the primary type of benefit resulting from the installation of 

roundabouts. New traffic patterns resulting from a roundabout, however, also may influence 

other aspects of road use, including driver travel time and operating costs. In the current 

study, these other types of potential road user benefits were analyzed based on research 

studying roundabouts that had been installed over the past thirteen years. These studies 

examined the change in time spent idling at an intersection before the installation of a 

roundabout, when the intersection was a two-way stop, and after the roundabout was 

complete. Two studies were from Kansas (Russell et al 2005; Luttrell et al 2000) and one was 

from Maryland (Kennedy and Taylor 2005). Results varied by study, with two studies 

showing a small increase in time spent at the intersection and one showing a modest decline 

in time spent at the intersection. Average results across the three studies indicated that 

vehicles on average would spend an additional 0.8 seconds at the intersection after it was 

converted to a roundabout. Average AADT at the three intersections was approximately 

8,200. This additional time at the intersection also would lead to additional fuel costs. 

Additional fuel costs, in turn would lead to additional environmental costs from pollution. 

The additional time from 0.8 seconds per vehicle would lead to an additional 1.85 

hours of travel time per day at the intersection. This time was valued at $10.72 per hour, 

which is half the average hourly private sector wage rate in Kansas of $21.45 per hour. The 

U.S. Department of Transportation recommends utilizing half of the wage when evaluating 

leisure time and wage rates for Kansas were taken from the Bureau of Labor Statistics of the 

United States Department of Commerce. The conservative approach assumes single 
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occupancy during a leisure trip. This wage rate implies time costs of $20 per day after the 

installation of the roundabout or additional costs of $7,200 per year.  

Additional time spent at the intersection implies additional gasoline usage. In 

particular, there is additional gas usage from idling while waiting to enter and pass through an 

intersection. Based on estimates in AASHTO (2010), 0.055 gallons of gasoline are utilized 

per minute of idling across classes of automobiles and trucks. This implies use of 6.1 gallons 

per day and $19 additional dollars per day in operations costs due to additional gasoline use 

and an average price for gasoline and diesel just above $3.00 per gallon. This yields an 

estimate of $6,900 in additional spending on gasoline per year after conversion to a 

roundabout. The additional fuel use also would lead to just over $1 per day in additional 

environmental costs assuming there is 20 pounds of carbon emitted per gallon of gasoline 

(Office of Transportation and Air Quality 2005) and a social cost of carbon of $21 per pound. 

This daily cost implies an annual cost of around $450. Combining time costs, vehicle 

operation costs and pollution costs, the increase in costs is $14,500 per year after the 

conversation of a two way stop intersection to a roundabout assuming AADT of 8,200.      

These additional costs should be subtracted from the estimated $1.141 million in 

annual savings due to a reduction in accident costs after the installation of the roundabout. 

The net savings from all road user benefits would be an estimated $1,127 million per year. 

This amount of annual savings should be compared to the cost of installing a roundabout.  

The present value of these annual savings can be calculated to compare to the 

construction costs. The present value is calculated over a 20-year period utilizing a 7% real 
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interest rate. These are conservative values in terms of utilizing a relatively short project life 

and a high real interest rate. The higher rate is appropriate, given uncertainty about the 

benefits from any particular roundabout installation. Under these conditions, the present 

value of annual net road user benefits would be $11.94 million from the installation of the 

roundabout. 

These benefits should be compared to the cost of roundabout construction. Costs were 

estimated based on the real (actual costs measured after project completion) costs of 

converting a two-way stop intersection into a roundabout. Costs estimates were available for 

three Kansas projects (Church 2007), including an intersection of US-50 and US-77 (during 

2006), an intersection of K-68 and Old Kansas City Road (during 2001), and an intersection 

of the North Junction of US-59 and US-161 (during 2006). The average construction costs for 

the three projects, after adjusting for an increase in the cost of construction materials in the 

producer price index, was $3.61 million in 2013 dollars. These costs can be compared with 

the present value of road user benefits of $11.94 million to calculate an estimated benefit cost 

ratio for the project. The benefit cost ratio from projects to replace two-way stop intersections 

with a roundabout under AADT of around 8,200 was 3.3. 

4.3 Conclusion and Discussion 

This chapter focused on the economic assessment of four rural high-speed approach 

TWSC intersections that were converted to roundabouts in Kansas. The evaluation 

procedures utilized were from the Highway Safety Manual (AASHTO 2010a).  

Results of the analysis showed that the estimated safety benefits were significant in 
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monetary terms. As in our case, the annual value of the reduction in comprehensive crash 

costs from conversion of a TWSC intersection on a rural, high-speed roadway to a modern 

roundabout was between $1.0 million and $1.6 million in 2014 dollars. After taking 

additional operational costs and construction costs into consideration, the benefit cost ratio 

from projects to replace two-way stop intersections with a roundabout under AADT of 

around 8,200 was 3.3. Although it is too early to generalize this conclusion to all TWSC 

intersections, it should be reasonable for analysts and decision makers to expect parallel 

monetary benefits from converting rural high-speed approach TWSC intersections with 

similar traffic conditions and crash histories to modern roundabouts.   

Although the above two chapters accomplished the objectives of evaluating the safety 

benefits of rural roundabouts with high-speed approaches, the analysis is limited to the four 

intersections. The four sites may not be representative of all TWSC intersections in the U.S. 

with respect to traffic volumes and number of crashes. However, they should be 

representative of TWSC intersections with similar crash and traffic histories, design features, 

and driving behaviors. Studies based on larger datasets that include more qualified rural high-

speed intersections are needed in the future to further confirm the safety performance of such 

roundabouts. On the other hand, for the safety benefit evaluation, the analysis relies on the 

average severity of non-fatal injury crashes that was utilized in AASHTO (2010b). A more 

precise estimate of safety benefits could consider the specific severity of non-fatal injury 

crashes reported at roundabouts and stop-controlled or signalized intersections. The severity 

might be expected to differ, particularly in light of the lesser severity of crashes in 
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roundabouts observed in table 3.3  
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Chapter 5 Safety of Multilane Roundabouts 

5.1 Data Collection 

Due to the non-availability of crash and other relevant data on rural multilane 

roundabouts for this research, the research team extended the topic to urban multilane 

roundabouts by extracting data from published research results (Bill et al. 2011; Eisenman et 

al. 2004; Bhagwant N. Persaud et al. 2001; Maryland State Highway Administration 2002) 

and synthesized them in this report (table 5.1). 

Table 5.1 Before-after crashes for urban multilane roundabouts 

State County 
Months 

Before 

Months 

After 

Control type 

before* 

Before After 

Total Injury Total Injury 

WI Wood 36 36 MRSC 17 8 20 0 

WI Brown 36 36 SGC 9 1 43 3 

WI Milwaukee 36 36 AWSC 1 0 13 2 

WI Racine 36 36 MRSC 28 9 20 2 

WI Dane 36 36 SGC 14 1 11 0 

WI Dane 36 36 AWSC 20 12 39 7 

WI Dane 36 36 AWSC 13 5 8 1 

WI Dane 36 36 AWSC 9 4 2 0 

CO Avon 22 19 SGC 44 4 44 1 

CO Avon 22 19 SGC 25 2 13 0 

CO Avon 22 19 SGC 48 4 18 0 

CO Avon 22 19 MRSC 12 0 3 0 

CO Avon 22 19 MRSC 11 0 17 1 

CO Vail 36 47 MRSC 16 5 14 2 

CO Vail 36 47 MRSC 42 5 61 0 

CO Vail 36 21 MRSC 18 1 8 1 

CO Vail 36 21 MRSC 23 2 15 0 

MD Baltimore 36 24 MRSC 5 2 0 0 

MD Prince 

George's 

36 12 UN 1 0 9 1 

MD Anne 

Arundel 

60 36 UN 30 13 9 1 

MD Baltimore 60 60 SGC 34 21 77 14 

*Traffic control types before the intersections were converted to roundabouts: MRSC- Minor 

Road Stop Control; AWSC- All-Way Stop Control; SGC- Signal Control; UN –Unknown. 
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5.2 Multilane Roundabout Crash Summary by State 

A summary of crash frequencies for each involved state mentioned above is presented 

in table 5.2, and a simple before-after crash rate analysis was carried out. Table 5.3 shows the 

annual crash rates and changes before and after conversion. Notice this simple before-after 

analysis did not reflect the changes in traffic volumes before and after a roundabout is 

constructed; a more sophisticated model (e.g., an EB model that takes into account the 

changes of traffic conditions) may reveal different results. 

 

Table 5.2 Summary of crashes for each state 

States 
Months 

Before 

Months 

After 

Before After 

Total Injury Total Injury 

WI (8 sites) 288 288 111 40 156 15 

CO (9 sites) 254 231 239 23 193 5 

MD (4 sites) 192 132 70 36 95 16 

Total (21 sites) 734 651 420 99 444 36 

 

 

Table 5.3 Changes in crash rates in before and after periods 

States 

Total Crash Rates 

(crashes/year) 

Injury Crash Rates 

(crashes/year) 

Before  After Change Before After Change 

WI (8 sites) 4.6 6.5 1.9 1.7 0.6 -1.0 

CO (9 sites) 11.3 10.0 -1.3 1.1 0.3 -0.8 

MD (4 sites) 4.4 8.6 4.3 2.3 1.5 -0.8 

Average (21 sites) 6.9 8.2 1.3 1.6 0.7 -1.0 

 

 

From tables 5.2 and 5.3, it appears that when converted to multilane roundabouts, the 

urban intersections experienced a greater number of total crashes but fewer injury crashes 
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overall. In Colorado, both total crashes and injury crashes were reduced after the construction 

of multilane roundabouts. Wisconsin and Maryland, based on the simple before-after crash 

rate comparisons above, experienced a slight increase in total crashes after construction of 

multilane roundabouts but injury crash rates decreased significantly. 

 Three out of the four studies cited above also applied the EB method to predict 

crashes in the after period, assuming no roundabout was constructed. The results were 

extracted from those reports and are summarized in table 5.4 (the sample size was 18). 

 

Table 5.4 Crash reports with EB estimates 

State County 
Months 

Before 

Months 

After 

Control 

type 

before 

Total Injury 

Observed 

After 
EB-After 

Observed 

After 

EB-

After 

WI Wood 36 36 MRSC 20 12.7 0 5.3 

WI Brown 36 36 SGC 43 18.9 3 5.8 

WI Milwaukee 36 36 AWSC 13 3.3 2 1.4 

WI Racine 36 36 MRSC 20 17.6 2 3.9 

WI Dane 36 36 SGC 11 11.8 0 2.1 

WI Dane 36 36 AWSC 39 27.3 7 9.6 

WI Dane 36 36 AWSC 8 17.2 1 6.8 

WI Dane 36 36 AWSC 2 8.4 0 2.9 

CO Avon 22 19 SGC 44 49.8 1 5.4 

CO Avon 22 19 SGC 13 30.1 0 2.3 

CO Avon 22 19 SGC 18 52.1 0 5.3 

CO Avon 22 19 MRSC 3 19.9 0 0 

CO Avon 22 19 MRSC 17 12.2 1 0 

CO Vail 36 47 MRSC 14 19.1 2 4.6 

CO Vail 36 47 MRSC 61 50.9 0 5.7 

CO Vail 36 21 MRSC 8 9.8 1 1.1 

CO Vail 36 21 MRSC 15 11.8 0 1.3 

MD Baltimore 36 24 MRSC 0 4.3 0 1.6 

 

 

Table 5.5 presents a comparison of observed crashes and EB predicted crashes in the 
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after period by state. Wisconsin still experienced an increase in total crashes, but Colorado 

and Maryland experienced reductions in total crashes. Injury crashes reported in all three 

states experienced significant reductions. 

 

Table 5.5 Summary of observed and EB predicted crashes by states 

State 
Months 

Before 

Months 

After 

Total Crash Injury Crash 

Observed 

After 

EB-

After 

Reduction 

(%) 

Observed 

After 

EB-

After 

Reduction 

(%) 

WI (8 

sites) 
288 288 156 117.2 33.1 15 37.8 -60.3 

CO (9 

sites) 
254 231 193 255.7 -24.5 5 25.7 -80.5 

MD (1 

site) 
36 24 0 4.3 -100.0 0 1.6 -100.0 

Total 578 543 349 377.2 -7.5 20 65.1 -69.3 

 

5.3 Crash Summary by Control Type 

Table 5.6 shows the comparisons of observed crash frequencies and predicted crash 

frequencies by EB model. 

 

Table 5.6 Observed and EB predicted crashes by traffic control types before conversion 

Control Type Before 

Conversion 

Total Crash Injury Crash 

Observed 

After 

EB-

After 

Reduction 

(%) 

Observed 

After 

EB-

After 

Reduction 

(%) 

MRSC (9 sites) 158 158.3 -0.2 6 23.5 -74.5 

AWSC (4 sites) 62 56 10.3 10 21 -51.7 

SGC (5 sites) 129 162.7 -20.7 4 20.9 -80.9 

total (18 sites) 349 377.2 -7.5 20 65.1 -69.3 

 

 

Table 5.6 shows that multilane roundabouts improved safety overall by significantly 

decreasing injury crashes regardless of the type of traffic control they had before the 
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conversion. As to the total crashes, the conversion to roundabouts was most effective when 

the before traffic control type was signal control, followed by stop control on the minor road 

approaches (e.g., one way stop control for three-leg intersections and two-way-stop control of 

four-leg intersections). Compared to all-way-stop control, multilane roundabouts experienced 

more crashes. 

In conclusion, multilane roundabouts in urban settings seem to be safer than 

traditional traffic controls, especially considering the severity of crashes. The safety benefit is 

mostly evident when the previous intersection was signal controlled or minor-road-stop 

controlled. Although total crashes seemed to increase for all-way-stop control, the increase 

was minimal compared to the decrease of severe crashes. Therefore, conversion to multilane 

roundabouts shows potential with regard to safety improvement.  

5.4 Rural/Suburban Multilane Roundabouts  

In the Wisconsin report (Bill et al. 2011), the researchers included several multilane 

roundabouts in rural settings. The crash information for those roundabouts was extracted 

from the report and is summarized in table 5.7. 
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Table 5.7 Rural/suburban multilane roundabouts in Wisconsin report 

Intersection 
Months 

Before 

Months 

After 
Setting 

Contro

l type 

before 

Total Crashes Injury Crashes 

Before After Before After 

STH 42 & I 43 

RAMPS (West) 
36 36 Rural SGC 9.5 12.5 2 4.5 

STH 42 & I 43 

RAMPS (East) 
36 36 Rural SGC 15.5 15.5 2 3.5 

STH 42 & 

VANGUARD Wal-

Mart Entrance 

36 36 Rural SGC 2 8 1 0 

Elkhorn Rd (Bus 

12)/Bluff Rd/Clay St 
36 36 Suburb NC/Y* 3 3 1 0 

Total - - - - 30 39 6 8 

*NC/Y – No control or yield 

 

 

The Wisconsin report provided EB analysis results taking into consideration traffic 

and other changes between the before and after periods. The expected crash frequencies were 

compared with the actual observed crash frequencies, as shown in table 5.8. It can be seen 

that all four sites experienced significant reductions in injury crashes after multilane 

roundabouts were constructed. All but one site also experienced significant reductions in total 

crashes. Therefore, evidence suggests that the safety benefits of rural multilane roundabouts 

are even more significant than that of their urban counterparts. 
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Table 5.8 Compared the EB model results with observed crash frequencies 

Intersection 

Total Crashes Injury Crashes 

Expected 

Crashes 

(EB)-After 

Observed-

Expected 

Reduction 

(%) 

Expected 

Injury 

Crashes (EB)-

After 

Observed-

Expected 

Reductio

n (%) 

STH 42 & I 43 

RAMPS 

(West) 

25.7 -13.2 -51.4 8.9 -4.4 -49.4 

STH 42 & I 43 

RAMPS (East) 
25.8 -10.3 -39.9 7.0 -3.5 -50.0 

STH 42 & 

VANGUARD 

Wal-Mart 

Entrance 

12.1 -4.1 -33.9 7.9 -7.9 -100.0 

Elkhorn Rd 

(Bus 12)/Bluff 

Rd/Clay St 

2.8 0.2 7.1 1.1 -1.1 -100.0 

Total 66.4 -27.4 -41.3 24.9 -16.9 -67.9 
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Chapter 6 Conclusions and Recommendations 

This report focused on two aspects related to high-speed multilane roundabouts in 

rural or suburban settings; the first was the tradeoff of converting two-way stop-controlled 

intersections to roundabouts, and the second was the safety of newly constructed 

roundabouts. 

Several research methods were implemented, including literature search, a survey of 

state and local transportation agencies, statistical analysis, and economic analysis. Results of 

the survey indicated the need for proper design of roundabouts including signage and lighting 

and the possibility of benefits that may be gained from public informational campaigns 

illustrating roundabout benefits. The use of peer review of roundabout design employed by 

some agencies holds promise in designing appropriate roundabouts that meet the needs of the 

traveling public.   

Due to limited information on high-speed rural multilane roundabouts, two parts of 

the research focused on rural single-lane roundabouts and urban multilane roundabouts. 

Results revealed that high-speed rural single roundabouts provided similar safety benefits to 

their urban counterparts. The finding is consistent with previous studies on rural high-speed 

roundabouts. Through the sample collected from Kansas, this study found that by converting 

two-way-stop controls to high-speed rural single-lane roundabouts, total crashes decreased by 

58.13%, fatal crashes reduced by 100% at all locations, and non-fatal injury crashes reduced 

with an overall reduction rate of 76.47%. Property-damage-only crashes were reduced by 

35.49% as a whole. The reduction in crashes also yielded a monetary benefit of between $1.0 
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million and $1.6 million in 2014 dollars. While taking into consideration the added 

operational costs and initial construction costs, the benefit cost ratio from projects to convert 

two-way stop intersections to a roundabout under AADT of around 8,200 was 3.3. As far as 

multilane roundabouts were concerned, this study found that multilane roundabouts in urban 

settings seem to be safer than traditional traffic controls, especially considering the severity 

of crashes. The safety benefits are mostly evident when the previous intersection was signal 

controlled or minor road stop-controlled. Conversion from traditional controlled intersections 

to multilane roundabouts showed significant potential with regard to safety. Also, the safety 

benefits of rural multilane roundabouts were justified and their safety benefits seemed to be 

even more significant than that of the urban multilane roundabouts. 

In conclusion, roundabouts constructed on high-speed rural or suburban highways 

appear to have significant benefits compared to two-way stop-controlled intersections and are 

recommended for construction with appropriate design, where feasible  
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Appendix A. Survey of State/Local Transportation Agencies 

Interview Question List 

Part 1. Are there any roundabouts in your state/city that experienced safety issues after they were constructed? 

If there is any, please help us finish Part 2, Part3, Part 4 and Part 5. Thank you!  

If there is none, please help us finish Part 6. Thank you! 

 

 

Part 2 Basic Information. Please provide some basic information for these roundabouts (that experienced safety issues). 

Rou

ndab

out 

No. 

CITY COUNTY 

INTERSEC

TION 

LOCATION 

PREVIOUS  

INTERSECTION  

CONTROL 

SETTINGS 

1.RURAL 

2.URBAN 

3.SUBURBAN 

# OF  

APPRO

ACHES 

# OF  

LANES IN 

EACH 

APPROACH 

# OF  

CIRCULATOR

Y  

LANES 

APPROACH  

SPEED  

LIMIT (mi/h) 

Note 

1           

2           

(Please add attachments if there are more) 
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Part 3 Safety Issues.  

Roundabout 

No. 
Q1. What safety issues did the roundabouts have? 

Q2. What were the main public concerns or media publicity 

towards the roundabouts, if any? 

1   

2   

(Please add attachments if there are more) 

 

 

Part 4 Countermeasures. 

Roundabout 

No. 

Q3. What countermeasures have been taken to solve the 

problems? 
Q4. What were the results of these countermeasures?  

1   

2   

(Please add attachments if there are more) 
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Part 5 Experience and suggestions. 

Q5. What is your agency’s experience dealing with the safety of single-

lane roundabouts? 
 

Q6. What is your agency’s experience dealing with the safety of 

multilane roundabouts? 
 

Q7. What design, management or control elements does your agency 

pay attention to when constructing new roundabouts? 
 

Q8. What would your agency suggest do to prevent crash increase after 

the roundabout construction? 

 

Q9. What would your agency suggest do to prevent negative publicity 

after the roundabout construction? 
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Part 6 Experience and suggestions. 

Q10. What does your agency believe makes your roundabout successful 

in your state/city? 
 

Q11. What design, management or control elements does your agency 

pay attention to when constructing new roundabouts? 

 

 

Q12. What would your agency suggest do to prevent crash increase after 

the roundabout construction? 

 

 

Q13. What would your agency suggest do to prevent negative publicity 

after the roundabout construction? 

 

 

 

 


